AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习特征图 更多内容
  • 修订记录

    优化“数据集”、“特征工程”、“云端推理”章节。 2020-09-30 框架切换,全篇更换截。 优化“云端推理”章节。 2020-08-17 新增“云端推理”章节。 修改“模型管理”、“模型验证”章节截。 2020-07-16 Jupyterlab优化,对应特征工程章节截更新。 模

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦模型训练作业

    Array of strings 数据集特征集合 表5 ModelParamVo 参数 是否必选 参数类型 描述 predict_threshold 否 Float 预测阈值,最小值0,最大值1 learning_rate 否 Float 学习率,最小值0,最大值1 batch_size

    来自:帮助中心

    查看更多 →

  • 模型选择

    目前,学件已经集成了几十维到上百维不同种类的特征库,源于历史各类Case和通用KPI异常检测的算法库。通过数据的特征画像,可以实现自动化的特征推荐和算法推荐。 单击“特征画像”左下方的“模型选择”。 新增“模型选择”内容,如1所示。 1 模型选择 单击“模型选择”代码框左侧的标,运行代码。 运行结果如下所示:

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    在“计算节点管理”页面,查找需要发布数据的计算节点名称,单击“计算节点名称”进入计算节点详情页。 2 选择计算节点 在“计算节点详情”页,单击“前往计算节点”,在登录页正确输入部署计算节点时设置的“登录用户名”和“密码”。 3 前往计算节点 选择界面左侧“数据管理>数据预处理”,单击“创建”,可输入

    来自:帮助中心

    查看更多 →

  • 时序预测

    评估方法:预置了四种模型评估方法,可根据实际情况选择。如果这些评估方法不满足用户诉求,可单击代码框右侧的标,切换成代码视,将method改为自定义评估函数即可。 单击“模型评估”左侧的标,对模型性能进行评估。 代码运行完成后,会以的形式展示每个KPI的样本值和预测值。 父主题: 时序预测学件

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 安全服务

    Web应用防火墙 Web应用防火墙(Web Application Firewall,WAF)对网站业务流量进行多维度检测和防护,结合深度机器学习智能识别恶意请求特征和防御未知威胁,阻挡诸如 SQL注入或跨站脚本等常见攻击,避免这些攻击影响Web应用程序的可用性、安全性或消耗过度的资源,降低数据被篡改、失窃的风险。

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    计算,多样性算力,大数据等技术加速计算过程。 支持十亿节点、百亿边的超大规模数据库查询,提供适用于基因和生物网络数据的深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。

    来自:帮助中心

    查看更多 →

  • 修订记录

    新建数据集和导入数据章节“支持超大文件(10G)上传”功能增强。 模型训练任务界面优化,对应刷新模型训练截及界面参数描述。 模型验证任务界面优化,对应刷新模型验证截及界面参数描述。 2020-07-16 新增“学件”章节。 数据集简介章节新增“DatasetService数据集”介绍。

    来自:帮助中心

    查看更多 →

  • 什么是云容器引擎

    扩展插件市场:提供了多种类型的插件,用于管理集群的扩展功能,以支持选择性扩展满足特性需求的功能。 云容器引擎学习路径 您可以借助云容器引擎成长地,快速了解产品,由浅入深学习使用和运维CCE。

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 特征工程和算法工程的关系?

    特征工程和算法工程的关系? 用户创建特征工程的时候,进入特征工程,可以看到系统自动创建的与特征工程同名的算法工程。支持在同一个特征工程中创建多个算法工程,操作如下所示: 在JupyterLab环境编辑界面,单击界面左上角的“File > New Launcher”,界面右侧新增“

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 应用场景

    在线商城 智能审核商家/用户上传像,高效识别并预警不合规片,防止涉黄、涉暴类像发布,降低人工审核成本和业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:单张像识别速度小于0.1秒。 网站论坛 不合规片的识别和处理是用户原创内容(

    来自:帮助中心

    查看更多 →

  • 最新动态

    为后续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦分箱和IV计算作业

    of DatasetFeatureEntity objects 数据集特征列 label 是 String 标签列,最大值1000 featuresList 是 Map<String,Array<String>> 特征信息 instance_id 否 String 实例id,最大32位,由字母和数字组成

    来自:帮助中心

    查看更多 →

  • 获取纵向联邦作业详情

    SAMPLE_ALIGNMENT.样本对齐,FEATURE_SELECTION.特征选择,MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate String 纵向联邦算法学习率,最大长度16 label_dataset String

    来自:帮助中心

    查看更多 →

  • 保存纵向联邦作业

    SAMPLE_ALIGNMENT.样本对齐,FEATURE_SELECTION.特征选择,MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate 否 String 纵向联邦算法学习率,最大长度16 label_dataset 否

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了