AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习损失函数优化 更多内容
  • 什么是OptVerse

    天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 使用要求 OptVerse以开放API(Application Programming

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 方案概述

    、合理,有助于提高管制策略的有效性和针对性。 闭环管理与自主学习机制:国蓝中天实现了污染摸排流程化反馈数据的闭环管理与自主学习。这种机制使得管制系统能够不断学习优化,进一步提高污染管治的有效性。通过持续的数据反馈和学习,系统能够不断完善自身,适应不断变化的污染状况。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦模型训练作业

    senet层压缩比例,最小值2 save_format 否 String 模型保存格式 loss_function 否 String 损失函数 loss_param 否 String 损失函数参数json字符串 响应参数 状态码: 200 表6 响应Body参数 参数 参数类型 描述 job_instance_id

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 概述

    天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 OptVerse以开放API(Application Programming

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 产品优势

    多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析,盘古大模型能够捕捉语言中的细微差别和复杂模式,无论是在词汇使用、语法结构,还是语义理解上,都能达到令人满意的精度。此外,模型具备自我学习和不断进化的能力,随

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性

    来自:帮助中心

    查看更多 →

  • FlinkSQL JSON_VALUE函数性能优化

    FlinkSQL JSON_VALUE函数性能优化 本章节适用于 MRS 3.5.0及以后版本。 使用场景 内置JSON_VALUE函数解析一个JSON item的多个字段时,复用上次JSON item的解析结果,提升算子性能。 使用方法 配置Flink作业时,可通过在FlinkServer

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 函数初始化入口Initializer

    用户函数内部进行初始化逻辑。 函数处理请求并将结果返回。 其中1、2和3是系统层面的冷启动开销,通过对调度以及各个环节的优化函数服务能做到负载快速增长时稳定的延时。4是函数内部初始化逻辑,属于应用层面的冷启动开销,例如深度学习场景下加载规格较大的模型、数据库场景下连接池构建、函数依赖库加载等等。 为

    来自:帮助中心

    查看更多 →

  • 方案概述

    桶中获取结果并处理。 函数工作流FunctionGraph,只需编写业务函数代码并设置运行的条件,即可以弹性、免运维、高可靠的方式运行。 语音识别服务,将wav语音文件转化为文字。 方案优势 高识别 该方案基于深度学习技术,对特定领域场景的语音识别进行优化,识别率高。 稳定可靠

    来自:帮助中心

    查看更多 →

  • 设置断点续训练

    num_classes) # 2.定义损失函数,详细请参见MindSpore自定义损失函数。 ls = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") # 3.定义优化器,详细请参见MindSpore自定义优化器。 opt =

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了