AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习数据集的均 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集训练。D

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据清洗:数据清洗是指对数据进行去噪、纠错或补全过程。 数据清洗是在数据校验基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入正样本和负样本,对数据进行清洗,保留用户想要类别,去除用户不想要类别。 数据选择:数据选择一般是指从全量数据中选择数据子集过程。 数据可以通

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    深度诊断E CS 操作场景 ECS支持操作系统深度诊断服务,提供GuestOS内常见问题自诊断能力,您可以通过方便快捷自诊断服务解决操作系统内常见问题。 本文介绍支持深度诊断操作系统版本以及诊断结论说明。 约束与限制 该功能依赖云运维中心(Cloud Operations

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    新建作业 在弹出界面进行数据选择,选择两方数据集作为整个作业数据集,必须选择一个当前代理数据集,另一个数据集可以来自空间中任意一方。两方数据集中一方数据集只含有特征,另一方数据集必须含有标签。 重试:开关开启后,执行失败作业会根据配置定时进行重试,仅对开启后执行作业生效

    来自:帮助中心

    查看更多 →

  • 基本概念

    在旧版体验式开发模式下,模型训练服务支持特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角图标中“数据处理”菜单下面的数据处理算子。 模型包 将模型训练生成模型进行

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集特征数据不够理想,而此数据集数据类别和一份理想数据集部分重合或者相差不大时候,可以使用特征迁移功能,将理想数据集特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计是以任务形式分派学员学习数据 自学记录统计是学员在知识库进行自学学习数据 统计数据统计是具体培训资源(实操作业、考试等)学员学习数据 父主题: 培训管理

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我课堂 MOOC课程 我考试

    来自:帮助中心

    查看更多 →

  • 数据准备

    估横向联邦学习得到模型准确率。此外由于原始数据集较小,采用了Imbalanced-Learn中SMOTE算法,进行了数据集扩充。下表为扩充过后数据集统计信息。 乳腺癌数据集统计信息。 统计量 取值 特征数目 30 xx医院训练样本数目 7366 其他机构训练样本数目

    来自:帮助中心

    查看更多 →

  • 功能介绍

    支持多机多卡环境下模型分布式训练,大幅度提升模型训练速度,满足海量样本数据加速训练需求。 图17 支持训练过程多个GPU运行指标监控 支持在线模型评估,在不进行模型发布前提下直接查看模型解译效果,支持上传文件、WMTS和WMS图层进行模型评估。 集成主流深度学习框架,包括Py

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    模型微调是指调整大型语言模型参数以适应特定任务过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现场景。这是通过在与任务相关微调数据集上训练模型来实现,所需微调量取决于任务复杂性和数据集大小。在深度学习中,微调用于改进预训练模型性能。 2 生成模型服务 将已有模型部署为模型服务

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    操作步骤-手机端: 登录手机app,点击“我”进入个人信息页面 图4 个人中心入口 点击“个人中心”并进入,在个人中心页面,点击“我学习”后面的箭头,进入“我学习 页面。 图5 个人中心页面(我岗位、我技能) 在“我学习页面,点击每个具体课程卡片,进入到课程详情页面。可

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    给输入数据加噪音尺度 给输入数据加噪音尺度,定义了给输入数据加噪音尺度。这个值越大,添加噪音越强烈,模型正则化效果越强,但同时也可能会降低模型拟合能力。取值范围:[0,1]。 给输出数据加噪音概率 给输出数据加噪音概率,定义了给输出数据加噪音概率。加噪音是一种正则化技术,它通过

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    8:图像饱和度与训练数据集特征分布存在较大偏移。 9:图像色彩丰富程度与训练数据集特征分布存在较大偏移。 10:图像清晰度与训练数据集特征分布存在较大偏移。 11:图像目标框数量与训练数据集特征分布存在较大偏移。 12:图像中目标框面积标准差与训练数据集特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    模型微调是指调整大型语言模型参数以适应特定任务过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现场景。这是通过在与任务相关微调数据集上训练模型来实现,所需微调量取决于任务复杂性和数据集大小。在深度学习中,微调用于改进预训练模型性能。 支持将平台资产中心预置部分模型作

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    行预习任务筛选检索。 单击【预习详情】按钮,弹出预习详情页面,可以查看预习介绍和相关资料信息开展预习。 我作业操作 登录用户平台。 单击顶部菜单栏学习任务菜单。 进入学习任务页面,单击【我作业】菜单 进入我作业页面,信息流形式展示我作业信息。 图3 我作业 通过作

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了