AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习使用数据集 更多内容
  • 自动学习简介

    文本分类:识别一段文本的类别。 使用自动学习功能构建模型的端到端示例,请参见“快速入门>使用自动学习构建模型”。 自动学习流程介绍 使用ModelArts自动学习开发AI模型无需编写代码,您只需上传数据、创建项目、完成数据标注、发布训练、然后将训练的模型部署上线。具体流程请参见图1。新版自动学习中,该流

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240079号 算法基本原理 分身数字人声音制作算法是指使用深度学习算法生成数字人声音模型,再使用该模型通过输入文字生成数字人语音的一种技术。 其基本情况包括: 输入数据:真人语音音频 。 算法原理:通过深度学习算法,学习真人语音音频生成数字人声音模型,通过该模型,输入文本生成数字人语音。

    来自:帮助中心

    查看更多 →

  • 创建声音分类项目

    对项目的简要描述。 “数据集” 可在右侧下拉框选择已有数据集,或单击“创建数据集”前往新建数据集。 已有数据集:在“数据集”右侧的下拉框中选择,仅展示同类型的数据集供选择。 创建数据集:前往创建数据集页面创建一个新的数据集。具体操作请参考创建ModelArts数据集。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 创建图像分类项目

    可在右侧下拉框选择已有数据集,或单击“创建数据集”前往新建数据集。 已有数据集:在“数据集”右侧的下拉框中选择,仅展示同类型的数据集供选择。 创建数据集:前往创建数据集页面创建一个新的数据集。具体操作请参考创建ModelArts数据集。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    # print tensorflow version print(tf.__version__) 下载Fashion MNIST图片数据集,该数据集包含了10个类型共60000张训练图片以及10000张测试图片。 1 2 3 # download Fashion MNIST dataset

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    执行训练任务 步骤一:上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    ModelArts Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    执行训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    执行训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

  • 执行微调训练任务

    执行微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 成长地图

    CCE是否支持跨区域使用,是否支持集群联邦特性?(文字超长时,可选用该类型,列表项样式改为:listitem_HD572fg_100) CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信?

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现图像分类

    使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 数据集版本发布失败

    试重新发布版本来解决。 ModelArts.4371 数据集版本已存在 出现此错误码时,表示数据集版本已存在,请重新发布数据集版本。 ModelArts.4712 数据集正在执行导入或同步等其他任务 如果自动学习使用数据集,正在执行导入或同步数据的任务时,此时进行训练将出现此

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    单击“提交”。创建的数据集显示在“我创建的”页签的数据集列表中,创建数据集完成。 步骤二:创建模型微调流水线 模型微调任务是指调整大型语言模型的参数以适应特定任务的过程,通过在与任务相关的数据集上训练模型来完成。所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了