AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习模型剪枝算法 更多内容
  • 分区表静态剪枝

    子集即可。 静态剪枝支持范围如下所示: 支持分区级别:一级分区、二级分区。 支持分区类型:范围分区、间隔分区、哈希分区、列表分区。 支持表达式类型:比较表达式(<,<=,=,>=,>)、逻辑表达式、数组表达式。 目前静态剪枝不支持子查询表达式。 为了支持分区表剪枝,在计划生成时会

    来自:帮助中心

    查看更多 →

  • 分区表静态剪枝

    分区表,包含任意分区键子集即可。 静态剪枝支持范围如下所示: 支持分区类型:范围分区、哈希分区、列表分区。 支持表达式类型:比较表达式(<,<=,=,>=,>)、逻辑表达式、数组表达式。 目前静态剪枝不支持子查询表达式。 为了支持分区表剪枝,在计划生成时会将分区键上的过滤条件强制

    来自:帮助中心

    查看更多 →

  • 参数化路径动态剪枝

    参数化路径动态剪枝 参数化路径动态剪枝支持范围如下所示: 支持分区类型:范围分区、哈希分区、列表分区。 支持算子类型:indexscan、indexonlyscan、bitmapscan。 支持表达式类型:比较表达式(<,<=,=,>=,>)、逻辑表达式。 参数化路径动态剪枝不支持子查

    来自:帮助中心

    查看更多 →

  • 模型评估

    模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算

    来自:帮助中心

    查看更多 →

  • 方案概述

    决策风险高:研判错误可能导致管制失效。 通过本方案实现的业务效果 打破数据孤岛:借力机器学习深度学习核心算法模型,打破区级各部门数据壁垒,可实现中台化、标准化、自动化的数据汇聚、存取、质控,推进一网统管、一网通享、一网通办能力。 构建多场景应用:基于核心算法赋能感知监测,充分利用各区现有监测数据,打造对移动源、

    来自:帮助中心

    查看更多 →

  • 基本概念

    技能(Skill) 技能(Skill)是运行在端侧摄像头的人工智能应用,一般由模型和逻辑代码组成。其中,逻辑代码是技能的框架,负责控制技能的运行,包括数据读入、模型导入、模型推理、结果输出等;模型是人工智能算法经由大数据训练而成,负责技能运行中关键场景的推理。 按应用场景划分,技能可

    来自:帮助中心

    查看更多 →

  • 套餐包

    用不同规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习深度学习算法开发及部署全功能,包含数据处理、模型开发、模型训练、模型管理和部署上线流程。 约束限制 套餐包在购买和使用时的限制如下: 套餐包和购买时选定的区域绑定,套餐包

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 训练任务

    计算节点:用于运行训练任务的训练节点个数。 上传模型节点:选择用特定节点上传训练模型,默认使用node-0(主节点)作为上传产物节点。 选择算法。 图2 选择算法 训练算法:根据业务所需选择算法,自定义算法需提前在“训练服务 > 算法管理”中创建成功。 参数列表:由算法携带,可修改参数值。 环境变量:由算法携带,可修改参数值。

    来自:帮助中心

    查看更多 →

  • 创建工程

    创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务的联邦学习工程及其训练任务和模型包。 创建联邦学习工程步骤如下。

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    联邦学习&重训练,保障模型应用效果 支持联邦学习模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期

    来自:帮助中心

    查看更多 →

  • 发布HoloSens算法模型类商品操作指导

    发布HoloSens算法模型类商品操作指导 前提条件 发布HoloSens算法模型类商品前,请先上传算法,待算法通过审批后可前往卖家中心发布算法模型类商品。 操作步骤 进入好望商城页面。 点击页面Banner处“进入商城”按钮,进入算法模型商品列表页。 在商品列表页点击“算法上传”,进入算法管理页面。

    来自:帮助中心

    查看更多 →

  • 方案概述

    图3 面向高端装备制造业的元模型驱动数字主线解决方案架构 梳理了航空装备体系、系统、设计、运维等业务元模型,梳理管理UPDM、SysML、AMEsim、Matlab等模型管理的基础元模型,实现了模型族与元模型共享。 对接了多种外部业务系统,基于元模型实例化装备型号数据,搭建和管理

    来自:帮助中心

    查看更多 →

  • 盘古自然语言大模型的适用场景有哪些

    盘古自然语言大模型的适用场景有哪些 自然语言处理 模型是一种参数量极大的预训练模型,是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • ModelArts训练好后的模型如何获取?

    ModelArts训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • ModelArts Standard使用流程

    了简洁易用的管理控制台,包含自动学习、数据管理、开发环境、模型训练、模型管理、部署上线等端到端的AI开发工具链。 Standard的自动学习可以帮助用户零代码构建AI模型。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了