AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习每个特征的重要性 更多内容
  • 学习项目

    通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计是以任务形式分派学员学习数据 自学记录统计是学员在知识库进行自学学习数据 统计数据统计是具体培训资源(实操作业、考试等)学员学习数据 父主题: 培训管理

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 分析ModelArts数据集中的数据特征

    Boxes 横坐标:目标框面积占比,即目标框面积占整个图片面积比例,越大表示物体在图片中占比越大。 纵坐标:框数量(统计所有图片中框)。 主要判断模型中使用anchor分布,如果目标框普遍较大,anchor就可以选择较大。 按边缘化程度统计框数量分布 Marginalization

    来自:帮助中心

    查看更多 →

  • 附录

    机安全风险,实时发现黑客入侵行为,以及满足等保合规要求。 Web应用防火墙 WAF:对网站业务流量进行多维度检测和防护,结合深度机器学习智能识别恶意请求特征和防御未知威胁,全面避免网站被黑客恶意攻击和入侵。

    来自:帮助中心

    查看更多 →

  • 产品术语

    模型训练输出预测值,对应数据集一个特征列。例如鸢尾花分类建模数据集提供了五列数据:花瓣长度和宽度、花萼长度和宽度、鸢尾花种类。其中,鸢尾花种类就是标签列。 C 超参 模型外部参数,必须用户手动配置和调整,可用于帮助估算模型参数值。 M 模型包 将模型训练生成模型进行打包

    来自:帮助中心

    查看更多 →

  • 算法一览表

    化地计算网络节点相关性和重要性(PersonalRank值越高,对source节点相关性/重要性越高)。 k核算法(k-core) k-core是图算法中一个经典算法,用以计算每个节点核数。其计算结果是判断节点重要性最常用参考值之一,较好刻画了节点传播能力。 k跳算法(k-hop)

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我课堂 MOOC课程 我考试

    来自:帮助中心

    查看更多 →

  • 功能介绍

    一句话识别 可以实现1分钟以内音频到文字转换。对于用户上传二进制音频格式数据,系统经过处理,生成语音对应文字,支持语言包含中文普通话、方言以及英语。方言当前支持四川话、粤语和上海话。 产品优势 高识别率 基于深度学习技术,对特定领域场景 语音识别 进行优化,识别率达到业界领先。

    来自:帮助中心

    查看更多 →

  • 调度概述

    业务优先级保障调度 根据业务重要性和优先级,设置自定义策略对业务占用资源进行调度,确保关键业务资源优先级得到保障。 业务优先级保障调度 AI任务性能增强调度 根据AI任务工作性质、资源使用情况,设置对应调度策略,可以增强集群业务吞吐量,提高业务运行性能。 AI任务性能增强调度

    来自:帮助中心

    查看更多 →

  • GS

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程中一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型所服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程中一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型所服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    操作步骤-手机端: 登录手机app,点击“我”进入个人信息页面 图4 个人中心入口 点击“个人中心”并进入,在个人中心页面,点击“我学习”后面的箭头,进入“我学习 页面。 图5 个人中心页面(我岗位、我技能) 在“我学习页面,点击每个具体课程卡片,进入到课程详情页面。可

    来自:帮助中心

    查看更多 →

  • 最新动态

    相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少情况,联合多个参与者共同样本不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级 在实际应用中,升级、回滚是一个常见场景, TICS

    来自:帮助中心

    查看更多 →

  • 提交特征工程作业

    时必填。取值范围[0,1]。 待提取用户特征 (user_features) 是 JSONArray 从全局特征文件提取输入用户特征,对不同类型特征进行相应处理,处理后数据用于排序模型训练。 特征必须来自用户属性配置表中定义特征。 [{ "feature_name": "age"

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程中一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型所服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • 漫游调优

    漫游引导效果,采用强化学习算法训练出每种终端款型行为特征。 竞争力 相比传统统一策略漫游引导,智能漫游差异化引导改善了漫游策略终端私有,网络侧主动引导成功率低业界难题,实现漫游成功率提升至90%,漫游体现提升。 相比业界定制化漫游策略(网络厂商与部分终端厂商合作),存在

    来自:帮助中心

    查看更多 →

  • 提交特征工程作业

    提交特征工程作业 提交特征工程作业 查询全局特征配置 父主题: 作业相关API

    来自:帮助中心

    查看更多 →

  • 服务支持使用哪些算法对图进行分析?

    化地计算网络节点相关性和重要性(PersonalRank值越高,对source节点相关性/重要性越高)。 k核算法(k-core) k-core是图算法中一个经典算法,用以计算每个节点核数。其计算结果是判断节点重要性最常用参考值之一,较好刻画了节点传播能力。 k跳算法(k-hop)

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    8:图像饱和度与训练数据集特征分布存在较大偏移。 9:图像色彩丰富程度与训练数据集特征分布存在较大偏移。 10:图像清晰度与训练数据集特征分布存在较大偏移。 11:图像目标框数量与训练数据集特征分布存在较大偏移。 12:图像中目标框面积标准差与训练数据集特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • PERF03-02 选择合适规格的虚拟机和容器节点

    内存密集型业务(如大数据处理、图像/视频处理、游戏开发、数据库等场景)主要消耗内存和存储维度容量。 存储密集型业务(如大型数据库、大数据分析、大规模文件存储、编译构建等场景)可能会比较消耗存储带宽。 根据业务特征选择合适虚拟机类型和规格。具体虚拟机类型规格请参考官方文档。 相关云服务和工具 弹性云服务器

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了