AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习框架包括 更多内容
  • 如何修改机器人规格,不同版本机器人区别

    适合企业复杂对话流程,需要多轮对话的场景,包括以下功能模块: 包含“高级版”功能,以及以下功能。 多轮技能管理 知识共享 应用授权 旗舰版 适用于对机器人答准率有高要求,数据样本大的场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练 如何修改机器人规格 登录CBS控制台。

    来自:帮助中心

    查看更多 →

  • 开发用于预置框架训练的代码

    开发用于预置框架训练的代码 当您使用ModelArts Standard提供的预置框架创建算法时,您需要提前完成算法的代码开发。本章详细介绍如何改造本地代码以适配ModelArts上的训练。 创建算法时,您需要在创建页面提供代码目录路径、代码目录路径中的启动文件、训练输入路径参数

    来自:帮助中心

    查看更多 →

  • ModelArts

    功能总览 全部 自动学习 Workflow 开发工具 算法管理 训练管理 AI应用管理 部署上线 镜像管理 资源池 AI Gallery ModelArts SDK 昇腾生态 自动学习 自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    用户可以根据训练报告结果对代码进行调优再训练,直到得到最优的训练代码。 新建联邦学习工程:创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 新建训练服务:调用已归档的模型包,对新的数据集进行训练,得到训练结果。

    来自:帮助中心

    查看更多 →

  • 将测试框架集成到项目中

    将测试框架集成到项目中 在您的项目中启动测试框架集成: 单击CodeArts IDE底部的“测试“()按钮来打开测试视图。 在测试视图中,单击“Configure Python Tests“按钮。 在弹出的窗口中选择测试框架来启动对应集成。 如果您选择“pytest“,Codea

    来自:帮助中心

    查看更多 →

  • 使用Rainbow SDK(NUWA框架)

    SDK(NUWA框架) 引入Rainbow SDK Rainbow SDK依赖Cloud Map的注册和发现能力,在引入Rainbow SDK之前,要先引入STS SDK和Cloud Map SDK,并完成STS和Cloud Map的初始化,具体请参见使用STS SDK(NUWA框架)和使用Cloud

    来自:帮助中心

    查看更多 →

  • 使用Cloud Map SDK(NUWA框架)

    loadingList=...,nuwa-gpaas-cloudmap,… 初始化Cloud Map 使用NUWA框架,只要增加对应配置,框架即会完成Cloud Map的初始化。 这些配置需要写到nuwa框架可以读到的文件里,一般是nuwa-xxx.properties,nuwa-xxx.yaml文件。因为Cloud

    来自:帮助中心

    查看更多 →

  • 附录

    部署您的容器化应用,以及方便的管理和维护。 volcano插件:Volcano是一个基于Kubernetes的批处理平台,提供了机器学习深度学习、生物信息学、基因组学及其他大数据应用所需要而Kubernetes当前缺失的一系列特性。 Flink Operator:通过Flink

    来自:帮助中心

    查看更多 →

  • SA与HSS服务的区别?

    服务功能区别 SA通过采集全网安全数据(包括HSS、WAF、AntiDDoS等安全服务检测数据),使用大数据AI、机器学习等分析技术,从资产安全、威胁告警、漏洞管理、基线检查维度,分类呈现资产安全状况。 HSS通过在主机中安装Agent,使用AI、机器学习深度算法等技术分析主机中风险,并从

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 图像搜索

    云容器引擎-成长地图 | 华为云 图像搜索 图像搜索(ImageSearch)基于深度学习与图像识别技术,结合不同应用业务和行业场景,利用特征向量化与搜索能力,帮助客户从指定图库中搜索相同或相似的图片。 免费体验 图说E CS 立即使用 立即使用 成长地图 由浅入深,带您玩转ImageSearch

    来自:帮助中心

    查看更多 →

  • 使用预置镜像制作自定义镜像用于训练模型

    使用预置框架构建 自定义镜像 原理介绍 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的训练作业;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面选择预置框架名称后,在预置框架版本下拉列表中选择“自定义”。

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    据有诸多好处,它可以保证不同 服务器 上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorch为例,PyTorch默认会通过文件接口访问数据,AI算法开发人员也习惯使用文件接口,因此文件接口是最友好的共享存储访问方式。

    来自:帮助中心

    查看更多 →

  • 可信联邦学习作业

    可信联邦学习作业 概述 创建横向训练型作业 横向联邦训练作业对接MA 创建横向评估型作业 创建纵向联邦学习作业 执行作业 查看作业计算过程和作业报告 删除作业 安全沙箱机制

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍 ModelArts中预置的训练基础镜像如下表所示。

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 统一角色桌面框架

    统一角色桌面框架 角色桌面介绍 角色桌面管理 创建角色桌面 编辑角色桌面 查看角色桌面 删除角色桌面 添加常用卡片 添加专属卡片 父主题: IPDCenter基础服务使用指南

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorch为例,PyTorch默认会通过文件接口访问数据,AI算法开发人员也习惯使用文件接口,因此文件接口是最友好的共享存储访问方式。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 简介

    基于DPDK的高性能交互框架,支持流计算模型,支持数据流并发,主要用于RTL开发场景,满足用户高带宽低时延的要求。 通用型架构 基于SDAccel的通用型交互框架,支持块计算模块,支持Xilinx SGDMA(Scatter-Gather DMA)数据传输框架,主要用于高级语言开发

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了