华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习降低训练时间开销 更多内容
  • 功能特性

    型、无监督学习模型、有监督学习模型实现对风险口令、凭证泄露、Token利用、异常委托、异地登录、未知威胁、暴力破解七大IAM高危场景进行智能检测。通过SVM、随机森林、神经网络等算法实现对隧道 域名 、DGA域名以及异常行为的智能检测。 AI引擎检测保持模型对真实数据的学习,保证数据

    来自:帮助中心

    查看更多 →

  • 为什么微调后的模型,回答总是在重复某一句或某几句话

    性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 父主题:

    来自:帮助中心

    查看更多 →

  • 如何降低直播延时?

    如何降低直播延时? 一般情况下,RTMP推流+FLV播放的正常延迟在5s左右,若您的直播出现延迟时间过长的现象,可参考以下方式进行性能优化。 GOP设置 GOP:(Group of Pictures)画面组,一个GOP就是一组连续的画面,每个画面都是一帧,一个GOP就是大量帧的集

    来自:帮助中心

    查看更多 →

  • 最新动态

    面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中的清晰人脸上传至您的后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超的客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔的客流信息。 车牌识别技能 面向

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    重新训练 对第一次训练无影响,仅影响任务重跑。 “是”:清空上一轮的模型结果后重新开始训练。 “否”:导入上一轮的训练结果继续训练。适用于欠拟合的情况。 批量大小 一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    自由模式:学员可以按照任意顺序进行学习,管理端可以设置资源的解锁时间,未到解锁时间无法学习; 闯关模式:学员必须学习完一个资源后,才能继续学习下一个内容,闯关模式可以设置是否阶段内/阶段间闯关。 展示样式:列表样式、地图样式 合格设置可设置项目整体的合格标准(包含学习进度,考试,实操,练习和

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 降低IO的处理方案

    降低IO的处理方案 问题现象 在DWS实际业务场景中因IO高、IO瓶颈导致的性能问题较多,其中应用业务设计不合理导致的问题占大多数。本文从应用业务优化角度,以常见触发IO慢的业务SQL场景为例,指导如何通过优化业务去提升IO效率和降低IO。 确定IO瓶颈&识别高IO的语句 通过以

    来自:帮助中心

    查看更多 →

  • 弹性伸缩概述

    群增加节点,从而保证业务能够正常提供服务。 弹性伸缩在CCE上的使用场景非常广泛,典型的场景包含在线业务弹性、大规模计算训练深度学习GPU或共享GPU的训练与推理、定时周期性负载变化等。 CCE弹性伸缩 CCE的弹性伸缩能力分为如下两个维度: 工作负载弹性伸缩:即调度层弹性,主

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    在下拉列表中选择数据集版本。 训练数据比例 训练数据比例是指用于训练模型的数据在完整数据集中所占的比例。 在实际应用中,训练数据比例的选择取决于许多因素,例如可用数据量、模型复杂度和数据的特征等。通常情况下,会选择较大的训练数据比例,以便训练出更准确的模型。一般来说,训练数据比例在70%到90%之间是比较常见的选择。

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    新建训练工程、联邦学习工程、训练服务或超参优化服务。 名称 模型训练名称。 模型训练工程描述 对模型训练工程的描述信息。 创建时间 训练工程、联邦学习工程、训练服务或者超参优化服务的创建时间。 类型 模型训练的类型。 包含如下选项: 模型训练 联邦学习 训练服务 优化服务 创建者 创建训练工程、联邦

    来自:帮助中心

    查看更多 →

  • 附录:微调训练常见问题

    expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deeps

    来自:帮助中心

    查看更多 →

  • 基于开销的清理延迟

    取值范围:整型,0~100,正数值表示打开基于开销的清理延迟特性;0表示关闭基于开销的清理延迟特性。 默认值:1 vacuum_cost_page_hit 参数说明:清理一个在共享缓存里找到的缓冲区的预计开销。表示锁住缓冲池、查找共享的Hash表、扫描页面内容的开销。 该参数属于USERSET类

    来自:帮助中心

    查看更多 →

  • 基于开销的清理延迟

    vacuum_cost_delay 参数说明:指定开销超过vacuum_cost_limit的值时进程将进入休眠的时间长度。 参数类型:USERSET 取值范围:整型,0~100,单位为毫秒(ms)。正数值表示打开基于开销的清理延迟特性;0表示关闭基于开销的清理延迟特性。 默认值:0 许多系统

    来自:帮助中心

    查看更多 →

  • 基于开销的清理延迟

    VACUUM”章节)语句执行过程中,系统维护一个内部的记数器,跟踪所执行的各种I/O操作的近似开销。如果积累的开销达到了vacuum_cost_limit声明的限制,则执行这个操作的线程将睡眠vacuum_cost_delay指定的时间。然后它会重置记数器然后继续执行。 这个特性是缺省关闭的。如需开启,需

    来自:帮助中心

    查看更多 →

  • 基于开销的清理延迟

    取值范围:整型,0~100,单位为ms,正数值表示打开基于开销的清理延迟特性;0表示关闭基于开销的清理延迟特性。 默认值:0 vacuum_cost_page_hit 参数说明:清理一个在共享缓存里找到的缓冲区的预计开销。表示锁住缓冲池、查找共享的Hash表、扫描页面内容的开销。 该参数属于USERSET类

    来自:帮助中心

    查看更多 →

  • ModelArts

    更多 自动学习 物体检测图片标注,一张图片是否可以添加多个标签? 创建预测分析自动学习项目时,对训练数据有什么要求? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 更多 训练作业 为什么资源充足还是在排队? 训练作业一直在等待中(排队)? ModelArts训练好后的模型如何获取?

    来自:帮助中心

    查看更多 →

  • 产品概述

    元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图,提供插件化的区块

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在 对象存储服务 (OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了