AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习减少过拟合 更多内容
  • 大模型开发基本概念

    数进行更新。这种方法可以显著减少微调所需的计算资源和时间,同时保持或接近模型的最佳性能。 拟合 拟合是指为了得到一致假设而使假设变得过度严格,会导致模型产生“以偏概全”的现象,导致模型泛化效果变差。 欠拟合拟合是指模型拟合程度不高,数据距离拟合曲线较远,或指模型没有很好地捕捉到数据特征,不能够很好地拟合数据。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    加数据,训练效果并不明显。 降低正则化约束。 正则化约束是为了防止模型拟合,如果模型压根不存在过拟合而是欠拟合了,那么就考虑是否降低正则化参数λ或者直接去除正则化项。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    制防止拟合。默认0。 L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止拟合。默认0。 正则损失计算方式 正则损失计算当前有两种方式。 full:指针对全量参数计算。 batch:则仅针对当前批数据中出现的参数计算 说明: batch模式计算速度快于full模式。

    来自:帮助中心

    查看更多 →

  • 排序策略

    制防止拟合。默认0。 L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止拟合。默认0。 正则损失计算方式 正则损失计算当前有两种方式。 full:指针对全量参数计算。 batch:则仅针对当前批数据中出现的参数计算 说明: batch模式计算速度快于full模式。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    选择合适的模型:根据任务目标选择适当的模型。 模型训练:使用处理后的数据集训练模型。 超参数调优:选择合适的学习率、批次大小等超参数,确保模型在训练过程中能够快速收敛并取得良好的性能。 开发阶段的关键是平衡模型的复杂度和计算资源,避免拟合,同时保证模型能够在实际应用中提供准确的预测结果。 应用与部署:当大模型训

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    据量相对较少,则可以使用较小的学习率和较小的数据批量大小,避免拟合。 通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习率和较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。 这里提供了一些微调参数的建议值和说明,供您参考:

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    止模型拟合。这个值越大,删除的路径越多,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1)。 特征删除概率 用于定义特征删除机制中的删除概率。特征删除(也称为特征丢弃)是另一种正则化技术,它在训练过程中随机删除一部分的输入特征,以防止模型拟合。这个值

    来自:帮助中心

    查看更多 →

  • 数据量和质量均满足要求,为什么盘古大模型微调效果不好

    认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型总是重复相同的回答

    过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低拟合的风险。 父主题: 大模型微调训练类问题

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型只能回答训练样本中的问题

    ,一旦输入了一个从未出现的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了拟合。请检查训练参数中的 “

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型的回答中会出现乱码

    过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

  • 二次开发

    用户基于平台在线开发,快速开始,无需费力搭建开发环境。 使用简单,没有很多编程技能要求。平台支持的语言形式与javascript/java很接近,尽量减少额外学习成本。在语言机制上,尽量减少对用户的干扰,使用户能专注于造型逻辑和API调用,而非纠结于语言规则和形式。平台会支持提升开发体验功能,包括指令列表供选择,代码片段自动填充等辅助开发功能。

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    decay)的机制,可以有效地防止拟合(overfitting)的问题。 学习率衰减比率 学习率衰减后的比率,用于控制训练过程中学习率的下降幅度。经过衰减后,学习率的最低值由初始学习率和衰减比率决定。其计算公式为:最低学习率 = 初始学习率 * 学习率衰减比率。也就是说,学习率在每次衰减后不会低于这个计算出来的最低值。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 如何评估微调后的盘古大模型是否正常

    评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了