华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习分类决策 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 执行作业

    参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • 智能决策中心

    智能决策中心 工业污染调控 图1 工业污染调控 通过单击导航栏的【决策支持】,选择子菜单【工业污染调控】进入。 页面左侧信息栏选择“方案模拟”,进行调控范围、调控时段、调控指标选择。单击调控措施的【展开查询】按钮,选择所在区域、所属行业、当前措施。单击搜索框,输入工厂名称,进行工

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的AI引擎有TensorFlow、PyTorch

    来自:帮助中心

    查看更多 →

  • 决策图元

    决策图元 决策图元的作用 配置该图元能够在服务编排中创建判断条件,根据判断结果连线其他图元,决定后续执行何种操作,类似if语句。 如何使用决策图元 在逻辑中,拖拽“决策”图元至画布中。 选中决策图元,单击,设置基本信息。 表1 基本信息参数说明 参数 参数说明 标签 图元的标签,

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现垃圾分类

    步骤四:创建新版自动学习图像分类项目 确保数据集创建完成且可正常使用后,在ModelArts控制台,左侧导航栏选择“开发空间 > 自动学习”,进入自动学习总览页面。 单击选择“图像分类”创建项目。完成参数填写。 名称:自定义您的项目名称。 描述:自定义描述您的项目详情,例如垃圾分类。 数据集

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现垃圾分类

    步骤四:创建新版自动学习图像分类项目 确保数据集创建完成且可正常使用后,在ModelArts控制台,左侧导航栏选择“开发空间 > 自动学习”,进入自动学习总览页面。 单击选择“图像分类”创建项目。完成参数填写。 名称:自定义您的项目名称。 描述:自定义描述您的项目详情,例如垃圾分类。 数据集

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现声音分类

    使用自动学习实现声音分类 准备声音分类数据 创建声音分类项目 标注声音分类数据 训练声音分类模型 部署声音分类服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现文本分类

    使用自动学习实现文本分类 准备文本分类数据 创建文本分类项目 标注文本分类数据 训练文本分类模型 部署文本分类服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 分类

    分类 添加节点 编辑节点 管理属性 布局属性 生效节点 失效节点 删除节点 父主题: 数据模型管理

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现图像分类

    使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 概述

    概述 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 产品介绍

    来自:帮助中心

    查看更多 →

  • 分类

    分类 Octopus 目录 标注文件目录结构 +--- 1628568066600 | +--- 1628568066600.jpg | +--- 1628568066600.json +--- 1628654064999 | +--- 1628654064999.jpg

    来自:帮助中心

    查看更多 →

  • 天筹求解器服务简介

    天筹求解器服务简介 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 服务介绍

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • 方案概述

    容易出现问题甚至出现误导。 决策风险高:在决策层面由于研判错误,管制失效的风险很高。 在管治层面缺乏有效监管与评估,缺乏宏观角度的综合性分析服务。 决策风险高:研判错误可能导致管制失效。 通过本方案实现的业务效果 打破数据孤岛:借力机器学习深度学习核心算法模型,打破区级各部门数

    来自:帮助中心

    查看更多 →

  • 管理决策表

    决策表”,单击表头后的,可对决策表进行排序,也可启用/禁用对策表。 图1 决策表管理 表1 “决策表管理”页签说明 参数名 参数说明 名称 决策表的名称。 在创建决策表时配置的名称。 标签 决策表的展示标签。 在创建决策表时配置的标签。 描述 决策表描述信息。 最后修改人 最近一次修改决策表的用户名。 最后修改时间

    来自:帮助中心

    查看更多 →

  • 如何创建决策表

    版本的决策表编辑器。 /:禁用或启用决策表。 :删除决策表。当该按钮置灰时,表示不可删除,系统预置的决策表不可删除。 在决策表列表中,单击具体的决策表名称,可查看该决策表的详细信息。 表2 决策表详情页面说明 参数 参数说明 单击该按钮,可进入决策表的编辑器页签。如果决策表有多个

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了