AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习分类精度要求 更多内容
  • 训练精度测试

    训练精度测试 约束限制 目前仅支持以下模型: qwen2.5-7b qwen2-7b qwen1.5-7b llama3.2-3b llama3.1-8b llama3-8b llama2-7b yi-6b 流程图 训练精度测试流程图如下图所示。 图1 训练精度测试流程图 执行训练任务

    来自:帮助中心

    查看更多 →

  • 指标分类

    指标分类 主机OS指标 AOM主机OS指标详情请参考指标总览 SAP系统指标 SAP系统指标分为SAP HANA指标、SAP NetWeaver ABAP与Java应用指标,详情请参考表1、表2: 表1 SAP HANA指标 指标组 指标名 指标含义 单位 database_version

    来自:帮助中心

    查看更多 →

  • 资源分类

    资源分类 管理员可以在此进行资源分类的设置,该分类贯穿企业大学学习、考试、测评、调研等不同使用场景,将企业的知识储备按一定依据(如:业务类型或职能等)划分为不同的类目以便于管理。学员可以通过资源分类快速筛选感兴趣的内容自行学习。 入口展示 图1 入口展示 新建资源分类 操作路径:

    来自:帮助中心

    查看更多 →

  • 硬件要求

    硬件要求 根据互动教学平台服务智慧教室功能性拓展,满足教室录播、外接摄像机、AV集成等需求,推荐硬件: 老师屏:ideaHub Pro 86寸、OPS硬件配置:i7十代CPU、16G内存、256G SSD。 学生屏:ideaHub Edu 86/65寸、OPS硬件配置:i5八代CPU、8G内存、128G

    来自:帮助中心

    查看更多 →

  • 部署要求

    货梯箱门处缝隙小于20mm。 货梯必须满足承重不小于2吨。 机房提供货梯数量建议不少于2个。 网络要求 请先了解CloudPond的组网方案和要求,以便快速理解CloudPond对本地的网络要求。 表5 网络要求 分类 要求 与CloudPond对接的网络交换机品牌与型号 请详细记录与CloudPon

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。 AI开发的基本流程 AI开发的基本流程通

    来自:帮助中心

    查看更多 →

  • Msprobe精度比对

    Msprobe精度比对 精度比对功能主要针对两类场景的问题: 同一模型,从CPU或GPU移植到NPU中存在精度下降问题,对比NPU芯片中的API计算数值与CPU或GPU芯片中的API计算数值,进行问题定位。 同一模型,进行迭代(模型、框架版本升级或设备硬件升级)时存在的精度下降问题,

    来自:帮助中心

    查看更多 →

  • SA与HSS服务的区别?

    洞管理、基线检查维度,分类呈现资产安全状况。 HSS通过在主机中安装Agent,使用AI、机器学习深度算法等技术分析主机中风险,并从HSS云端防护中心下发检测和防护任务,全方位保障主机安全。同时可从可视化控制台,管理主机Agent上报的安全信息。 表1 SA与HSS主要功能区别

    来自:帮助中心

    查看更多 →

  • 训练模型

    当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”和“训练轮次”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 确认信息后,单击“开始训练”。

    来自:帮助中心

    查看更多 →

  • ModelArts入门实践

    ModelArts Standard自动学习 使用Standard自动学习实现垃圾分类 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“图像分类”AI模型的训练和部署。 面向AI开发零基础的用户

    来自:帮助中心

    查看更多 →

  • 训练模型

    当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”和“语种”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 数据集版本不合格

    出现此问题时,表示数据集版本发布成功,但是不满足自动学习训练作业要求,因此出现数据集版本不合格的错误提示。 标注信息不满足训练要求 针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用

    来自:帮助中心

    查看更多 →

  • 概要

    yter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 规范要求

    规范要求 API生产 API开放 父主题: 附录-API治理规范指导

    来自:帮助中心

    查看更多 →

  • 系统要求

    系统要求 本节介绍使用Data Studio的最低系统要求。 软件要求 操作系统要求 Data Studio的操作系统配置要求如下表所示。 表1 支持操作系统及相应软件包 服务器 操作系统 支持版本 通用x86服务器 Windows Windows 7 (64 bit) Windows

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了