AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习超参数优化 更多内容
  • 优化器GUC参数的Hint

    优化器GUC参数的Hint 功能描述 设置本次查询执行内生效的查询优化相关GUC参数。hint的推荐使用场景可以参考各guc参数的说明,此处不作赘述。 语法格式 1 set( [@queryblock] param value) 参数说明 @queryblock 见指定Hint

    来自:帮助中心

    查看更多 →

  • 模型训练

    SDK文档”查看。 当前代码已预置运行参,可使用默认值。 优化 训练任务执行的过程中可以同步进行优化。 勾选“运行参”后的“优化”复选框,可配置运行参的参数类型、起始值、终止值、优化方法、优化目标和终止条件。训练完成后,可以单击查看优化报告,得到运行参不同取值下的模型评分和试验时长。详情请参见创建超参优化服务。

    来自:帮助中心

    查看更多 →

  • 创建工程

    描述信息,支持单击图标,编辑描述信息。 对训练任务的训练报告进行对比,输出训练任务在不同参下的评估指标,同时显示各训练任务的任务系统参数。 说明: 最多支持3个模型报告对比。 切换到其他模型训练工程、联邦学习工程、训练服务或优化服务详情界面。 Web IDE环境资源配置与管理,包括创建环境、暂停运行中

    来自:帮助中心

    查看更多 →

  • 准备工作

    定位前的排查当前主要包含如下几个方面: 训练参数。常见的参如下图所示: 图1 训练参数 模型的参通常可能调整的主要有学习率、batch size、并行切分策略、学习率warm-up、模型参数、FA配置等。用户在进行NPU精度和GPU精度比对前,需要保证两边的配置一致。 表1 参说明 参 说明 学习率 影响

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 排序策略

    能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。 表4 深度网络因子分解机参数说明 参数名称 说明 计算节点信息

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 方案概述

    AI空间算法:AI识别空间大小、动线、风水等维度参数,做到空间合理分区、科学布置; 模型智能布置:学习模型的色系、大小、风格,根据空间算法智能选择适配且搭配美观的模型组合 图5 模型智能布置 核心技术2:自研云渲染技术,实现高画质、交互式的实时渲染效果 云渲染技术 强大AI算力,使能分场景:利用AI算力分技术,可

    来自:帮助中心

    查看更多 →

  • 优化Flink Netty网络通信参数

    优化Flink Netty网络通信参数 操作场景 Flink通信主要依赖netty网络,所以在Flink应用执行过程中,netty的设置尤为重要,网络通信的好坏直接决定着数据交换的速度以及任务执行的效率。 操作步骤 以下配置均可在客户端的“conf/flink-conf.yaml

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 自动模型优化介绍

    中,对于每个参,TPE为与最佳目标值相关的参维护一个高斯混合模型l(x),为剩余的参维护另一个高斯混合模型g(x),选择l(x)/g(x)最大化时对应的参作为下一组搜索值。 表2 TPE算法的参数说明 参数 说明 取值参考 num_samples 搜索尝试的参组数 in

    来自:帮助中心

    查看更多 →

  • 计费说明

    开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。简单场景工作量预计不超过17人天 300,000.00 每套 AI算法原型开发-标准版 对业务场景为普通场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成

    来自:帮助中心

    查看更多 →

  • 优化Flink Netty网络通信参数

    优化Flink Netty网络通信参数 操作场景 Flink通信主要依赖netty网络,所以在Flink应用执行过程中,netty的设置尤为重要,网络通信的好坏直接决定着数据交换的速度以及任务执行的效率。 操作步骤 以下配置均可在客户端的“conf/flink-conf.yaml

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    勾选“自动打包”才会展示该参数,表示模型包打包版本。 数据集参数配置 数据集参 设置当前训练任务的数据集参,与模型训练保持一致。 参配置 运行参 运行参的名称,与模型训练保持一致。 单击“创建”,训练任务开始。 单击查看任务运行的详细情况,包括系统日志、运行日志和运行图。在评估报告中查看训练结果。 父主题:

    来自:帮助中心

    查看更多 →

  • 通过特权容器功能优化内核参数

    通过特权容器功能优化内核参数 前提条件 从客户端机器访问Kubernetes集群,需要使用Kubernetes命令行工具kubectl,请先连接kubectl。详情请参见通过kubectl连接集群。 操作步骤 通过后台创建daemonSet,选择nginx镜像、开启特权容器、配置生命周期、添加hostNetwork:

    来自:帮助中心

    查看更多 →

  • 概述

    天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 OptVerse以开放API(Application Programming

    来自:帮助中心

    查看更多 →

  • 修订记录

    上架模型包至AI市场 发布推理服务 云端推理框架 2019-10-30 JupyterLab环境编辑界面的菜单优化,对应“特征工程”章节内容调整和优化。 新增如下章节: Notebook开发 创建优化服务 创建Tensorboard 2019-04-30 第一次正式发布。 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 天筹求解器服务简介

    天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 服务介绍

    来自:帮助中心

    查看更多 →

  • TPE算法优化的超参数必须是分类特征(categorical features)吗

    TPE算法优化参数必须是分类特征(categorical features)吗 对于优化参数类型,TPE算法本身是没有限制的,但出于面对普通用户节省资源的目的,ModelArts在前端限制了TPE的参数必须是float,如果想离散型和连续型参数混用的话,可以调用rest接口。

    来自:帮助中心

    查看更多 →

  • 概述

    天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 产品介绍

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了