华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习ssd 预测过程 更多内容
  • 数据处理场景介绍

    数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 训练预测分析模型

    训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 最新动态

    计算节点管理 2021年7月 序号 功能名称 功能描述 阶段 相关文档 1 联邦预测 新增支持联邦预测作业。联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 公测 联邦预测作业 2 联邦分析新增union all语法 安全多方计算MPC扩展语法支持union

    来自:帮助中心

    查看更多 →

  • 场景描述

    机构的医疗数据提升乳腺癌预测模型的准确率。 进一步地,可根据该模型案例发散,构建老年人健康预测、高血压预测、失能早期预警模型等。 图1 乳腺癌预测研究应用场景示意 作业发起方通过计算节点上传数据、待训练模型的定义文件; 作业发起方配置 TICS 的横向联邦学习作业,启动训练; 模型参

    来自:帮助中心

    查看更多 →

  • 创建预测分析自动学习项目时,对训练数据有什么要求?

    创建预测分析自动学习项目时,对训练数据有什么要求? 数据集要求 文件规范:名称由以字母数字及中划线下划线组成,以'.csv'结尾,且文件不能直接放在OBS桶的根目录下,应该存放在OBS桶的文件夹内。如:“/obs-xxx/data/input.csv”。 文件内容:文件保存为“c

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    华为特有的高性能云计算,多样性算力,大数据等技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。

    来自:帮助中心

    查看更多 →

  • 方案概述

    、模型数据。另一个用于存储数据集及数据集预测结果。 使用 AI开发平台 ModelArts,用于机器学习模型训练,预测故障分析结果。 使用 函数工作流 FunctionGraph创建一个函数,进行数据处理并调用ModelArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务

    来自:帮助中心

    查看更多 →

  • 预测性维护功能

    预测性维护功能 设备概览操作 登录数字孪生管理控制台。 单击左半侧目录“设备概览统计”。 图1 设备概览统计 预测设备台账操作 登录数字孪生管理控制台。 单击左半侧目录“预测设备台账”。 单击页面右侧页面内容左上方“添加”,进入“添加预测设备台账”页面。 图2 添加预测设备台账1

    来自:帮助中心

    查看更多 →

  • 查看预测外呼

    查看预测外呼 前提条件 管理员已为指定座席人员建立预测外呼任务,并启动任务。 座席处于空闲态,预测外呼配有外呼数据且已经启动。 操作步骤 外呼业务代表进入云联络中心,输入账号、密码登录。 选择“外呼任务 > 座席外呼任务”。 图1 外呼任务 点击外呼结果,可查看外呼结果。 表1 预测外呼结果提示元素说明

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    时间序列预测 流数据处理中经常需要对于时间序列数据进行建模和预测,建模是指提取数据中有用的统计信息和数据特征,预测是指使用模型对未来的数据进行推测。 DLI 服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 实现过程

    实现过程 涉及接口 登录(login) 请求方法:PUT 请求的url:https://ip:port/agentgateway/resource/onlineagent/{agentid} 请参考签入 强制登录(forcelogin) 请求方法:PUT 请求的url:https

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 预测接口(文本标签)

    预测接口(文本标签) 分词模型 命名实体识别模型 父主题: 在线服务API

    来自:帮助中心

    查看更多 →

  • 分子属性预测(MPP)

    分子属性预测(MPP) ADMET属性预测接口 ADMET属性预测接口(默认+自定义属性) 父主题: API(AI辅助药物设计)

    来自:帮助中心

    查看更多 →

  • 准备预测分析数据

    得到模型时的输出(预测项)。 除标签列外数据集中至少还应包含两个有效特征列(列的取值至少有两个且数据缺失比例低于10%)。 当前由于特征筛选算法限制,预测数据列建议放在数据集最后一列,否则可能导致训练失败。 表格数据集示例: 以银行存款预测数据集为例:根据预测人的年龄、工作类型、

    来自:帮助中心

    查看更多 →

  • ADMET属性预测接口

    ADMET属性预测接口 功能介绍 计算小分子的物化性质,包括吸收(adsorption)、分布(distribution)、代谢(metabolism)、清除(excretion)与毒性(toxicity)。 URI POST /v1/{project_id}/admet 表1 路径参数

    来自:帮助中心

    查看更多 →

  • 重保风险预测

    重保风险预测 使用场景 仅白名单用户可以使用重保风险预测。 操作步骤 登录管理控制台。 选择“服务列表 > 管理与监管 > 优化顾问”优化顾问服务页面。 左侧导航树选择“容量优化 > 重保风险预测”。 单击“风险分析”进行风险预测配置。 批量参数设置,选择活动时间段。 配置容量阈

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了