GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习gpu占用率和速度 更多内容
  • GPU驱动故障

    GPU驱动故障 G系列弹性 云服务器 GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

  • 如何加快迁移速度?

    以使用perfmon命令调用资源监视器监控CPUI/O读写性能,Linux使用top/psiostat/iotop来监控CPUI/O性能。如果您的源端I/O读写性能、CPU性能差,建议您增加I/OCPU的资源或者减少 服务器 运行的负载。 父主题: 迁移时长

    来自:帮助中心

    查看更多 →

  • GPU设备检查

    GPU设备检查 功能 检查节点是否存在gpu设备,gpu驱动是否安装且运行正常。 语法 edgectl check gpu 参数说明 无 使用示例 检查节点GPU设备: edgectl check gpu 检查成功返回结果: +-----------------------+ |

    来自:帮助中心

    查看更多 →

  • GPU视图

    GPU视图 GPU资源指标可以衡量GPU性能使用情况,包括GPU的利用率、温度、显存等方面的监控数据,帮助您掌控GPU运行状况。 指标说明 图1 GPU资源指标 表1 GPU图表说明 图表名称 单位 说明 集群-显存使用率 百分比 集群的显存使用率 计算公式:集群内容器显存使用总量/集群内显存总量

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    自分配到2个GPU。但是TFJob1TFJob2均需要4块GPU卡才能运行起来。这样TFJob1TFJob2处于互相等待对方释放资源,这种死锁情况造成了GPU资源的浪费。 亲和调度问题 分布式训练中,PsWorker存在很频繁的数据交互,所以PsWorker之间的带宽直接影响了训练的效率。

    来自:帮助中心

    查看更多 →

  • 排序策略

    深度网络因子分解机,结合了因子分解机深度神经网络对于特征表达的学习,同时学习高阶低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。 表4 深度网络因子分解机参数说明 参数名称 说明 计算节点信息 用户可使用的计算资源种类。“8核|16GiB”、“8核|32Gi

    来自:帮助中心

    查看更多 →

  • 查询作业资源规格

    String 用户项目ID。获取方法请参见获取项目ID名称。 表2 查询检索参数说明 参数 是否为必选 参数类型 说明 job_type 否 String 指定作业的类型,可选的有“train”“inference”。查询自动学习资源规格无需此参数。 engine_id 否 Long

    来自:帮助中心

    查看更多 →

  • Kubeflow部署

    Kubeflow诞生于2017年,Kubeflow项目是基于容器Kubernetes构建,旨在为数据科学家、机器学习工程师、系统运维人员提供面向机器学习业务的敏捷部署、开发、训练、发布管理平台。它利用了云原生技术的优势,让用户更快速、方便地部署、使用管理当前最流行的机器学习软件。 目前Kubeflow 1

    来自:帮助中心

    查看更多 →

  • 负载伸缩概述

    多功能:支持基于系统指标变动、自定义指标变动固定时间周期进行负载伸缩,实现复杂场景下的负载伸缩。 多场景:使用场景广泛,典型的场景包含在线业务弹性、大规模计算训练、深度学习GPU或共享GPU的训练与推理。 负载伸缩实现机制 U CS 的负载伸缩能力是由FederatedHPACronFederate

    来自:帮助中心

    查看更多 →

  • 监控GPU资源指标

    监控GPU资源指标 通过PrometheusGrafana,可以实现对GPU资源指标的观测。本文以实际示例介绍如何通过Prometheus查看集群的GPU显存的使用。 本文将通过一个示例应用演示如何监控GPU资源指标,具体步骤如下: 访问Prometheus (可选)为Prom

    来自:帮助中心

    查看更多 →

  • GPU设备显示异常

    是,该驱动版本与镜像可能存在兼容性问题,建议更换驱动版本,操作指导,请参考安装GPU驱动。 否,请执行下一步。 请尝试重启云服务器,再执行nvidia-smi查看GPU使用情况,确认是否正常。 如果问题依然存在,请联系客服。 父主题: GPU驱动故障

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    数字人语音驱动算法是指使用深度学习将语音转换成3D数字人表情肢体驱动数据的一种技术。 其基本情况包括: 输入数据:语音音频数据。 算法原理:通过深度学习算法,提取语音音频中的特征,并转化为表情驱动的表情基系数。 输出结果:表情基系数。 应用领域:应用于3D数字人文本语音驱动场景,包括

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    应用进程控制”,进入“应用进程控制”界面。 选择“白名单策略”页签。 单击策略状态为“学习完成,未生效”的策略名称,进入“策略详情”界面。 选择“进程文件”页签。 单击待确认进程数量,查看待确认进程。 图1 查看待确认进程 根据进程名称进程文件路径等信息,确认应用进程是否可信。 在已确认进程所在行的操作列,单击“标记”。

    来自:帮助中心

    查看更多 →

  • 离线异步任务场景

    执行。 实时感知任务状态 无 并行处理 离线GPU任务需要处理大量数据,对GPU资源供给要求高,通过API调用并行运行加快处理速度。 数据源集成 离线GPU任务对数据源的需求多种多样,处理过程中需要与多种存储产品(例如 对象存储OBS 多种消息产品(例如消息队列)进行频繁交互。 功能优势

    来自:帮助中心

    查看更多 →

  • 方案概述

    主要优势 详细描述 1 存算分离,资源利用率高 GPU/NPU算力SFS Turbo存储解耦,各自按需扩容,资源利用率提升。 2 SFS Turbo高性能,加速训练过程 训练数据集高速读取,避免GPU/NPU因存储I/O等待产生空闲,提升GPU/NPU利用率。 大模型TB级Checkp

    来自:帮助中心

    查看更多 →

  • Lite Server使用流程

    ver对应的裸金属服务器,后续挂载磁盘、绑定弹性网络IP等操作可在BMS服务控制台上完成。 xPU xPU泛指GPUNPU。 GPU,即图形处理器,主要用于加速深度学习模型的训练推理。 NPU,即神经网络处理器,是专门为加速神经网络计算而设计的硬件。与GPU相比,NPU在神经

    来自:帮助中心

    查看更多 →

  • 方案概述

    计,并结合真实工程应用案例及产业级实践环境,支撑创新应用型人才培养。 数字化全流程:数字化平台覆盖教学评测练管全流程,支撑ICT专业的教学实验实训。 即开即用:预装沙箱,提供即开即用的开发环境,通过服务器统一进行管理维护,学生一键进入实验操作、老师远程监管,降低运维工作量。 高

    来自:帮助中心

    查看更多 →

  • GPU虚拟化

    GPU虚拟化 GPU虚拟化概述 准备GPU虚拟化资源 使用GPU虚拟化 兼容Kubernetes默认GPU调度模式 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • Namespace和Network

    NamespaceNetwork Namespace(命名空间)是一种在多个用户之间划分资源的方法。适用于用户中存在多个团队或项目的情况。当前云容器实例提供“通用计算型”GPU型”两种类型的资源,创建命名空间时需要选择资源类型,后续创建的负载中容器就运行在此类型的集群上。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了