GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习gpu怎么配cpu 更多内容
  • DCS实例的CPU规格是怎么样的

    D CS 实例的CPU规格是怎么样的 Redis基础版: 使用DCS Redis基础版实例的用户无需关心CPU规格的指标,仅需关心QPS,带宽,内存大小等核心指标。 Redis基础版的实例基于开源Redis构造,开源Redis使用单个主线程处理命令,只能利用一个核的CPU,因此,只需

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    ch+CPU/GPU) PyTorch 镜像制作 自定义镜像 训练 - 此案例介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPUGPU。 从0制作自定义镜像并用于训练(MPI+CPU/GPU) MPI

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 规格变更

    规格变更 云服务器 如何和降,是否需要关机? 变更弹性云服务规格时,提示系统繁忙,无法成功提交? CentOS 5操作系统云服务器执行驱动安装脚本失败怎么办? Linux云服务器变更规格时执行驱动安装脚本失败怎么办? Windows弹性云服务器变更规格后数据盘脱机怎么办? Li

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    ,集群有4块GPU卡,TFJob1和TFJob2作业各自有4个Worker,TFJob1和TFJob2各自分配到2个GPU。但是TFJob1和TFJob2均需要4块GPU卡才能运行起来。这样TFJob1和TFJob2处于互相等待对方释放资源,这种死锁情况造成了GPU资源的浪费。 亲和调度问题

    来自:帮助中心

    查看更多 →

  • 性能资源类

    MySQL增加表字段后出现运行卡顿现象 长事务导致UNDO增多引起磁盘空间满 RDS for MySQL如何定位一直存在的长事务告警 RDS for MySQL部分SQL的commit时间偶现从几毫秒陡增到几百毫秒 本地SSD盘规格降选不到资源 ibdata1为什么会变大 父主题: RDS for MySQL

    来自:帮助中心

    查看更多 →

  • 按需计费

    例如,您在9:00:00购买了一台按需计费Pod,Pod规格为CPU 2核,内存 4GB,并在9:30:00升CPU 4核,内存 8GB,那么在9:00:00 ~ 10:00:00间会产生两条计费信息。 第一条对应9:00:00 ~ 9:30:00,Pod规格按照CPU 2核,内存 4GB计费。 第二条对应9:30:00

    来自:帮助中心

    查看更多 →

  • CPU管理策略

    在侧边栏滑出的“配置管理”窗口中,修改kubelet组件的CPU管理策略配置(cpu-manager-policy)参数值,选择static。 单击“确定”,完成配置操作。 为Pod设置独占CPU Pod设置独占CPU(即CPU绑核)有如下几点要求: 节点上开启静态(static)CPU管理策略,具体方法请参见为

    来自:帮助中心

    查看更多 →

  • 方案概述

    架构需要使用到大规模的计算集群(GPU/NPU服务器),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

  • 方案概述

    架构需要使用到大规模的计算集群(GPU/NPU服务器),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU)

    从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPUGPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux

    来自:帮助中心

    查看更多 →

  • GPU虚拟化

    GPU虚拟化 GPU虚拟化概述 准备GPU虚拟化资源 使用GPU虚拟化 兼容Kubernetes默认GPU调度模式 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • 使用ICAgent收集日志时CPU占用较高怎么处理?

    使用ICAgent收集日志时CPU占用较高怎么处理? 如果在使用ICAgent收集日志过程中遇到CPU占用较高(例如运行速度变慢/程序崩溃)的情况,请确认您配置的日志采集路径下是否有大量的日志文件,建议您定时清理,以减少ICAgent在收集日志过程中带来的系统资源占用。若还是无法解决,请联系技术支持协助。

    来自:帮助中心

    查看更多 →

  • 弹性云服务器支持的操作系统监控指标(安装Agent)

    该指标用于统计测量对象其他占用CPU使用率。 单位:百分比 采集方式(Linux):其他CPU使用率=1- 空闲CPU使用率(%)- 内核空间CPU使用率- 用户空间CPU使用率。 采集方式(Windows):其他CPU使用率=1- 空闲CPU使用率(%)- 内核空间CPU使用率- 用户空间CPU使用率。

    来自:帮助中心

    查看更多 →

  • 方案概述

    架构需要使用到大规模的计算集群(GPU/NPU服务器),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

  • ModelArts入门实践

    到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 本案例介绍如何从0开始制作镜像,并使用该镜像在ModelArts Standard平台上进行训练。镜像中使用的AI引擎是Pytorch,训练使用的资源是CPUGPU。 面向熟悉代码编写和调测的AI工程师,同时熟悉docker容器知识

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    Megatron-Deepspeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 Me

    来自:帮助中心

    查看更多 →

  • CPU管控

    CPU管控 GS_263200040 错误码: Cgroup failed to attach (tid %d) into "%s" group: %s(%d). 解决方案:请确认控制组%s的路径是否已被更改或删除了。 level: WARNING 父主题: WLM

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 安装GPU指标集成插件

    暂不支持CCE纳管后的GPU加速型实例。 前提条件 已安装GPU驱动,未安装lspci工具的云服务器影响GPU掉卡事件的上报。 如果您的弹性云服务器未安装GPU驱动,请参见GPU驱动概述安装GPU驱动。 安装GPU驱动需使用默认路径。 GPU驱动安装完后,需重启GPU加速型实例,否则可能

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 UCS On Premises GPU采用xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户定义使用的GPU数量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了