中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    深度学习 周期时间序列 数据准备 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 数据序列化

    序列化功能用在两个地方:序列化任务和序列数据。Spark任务序列化只支持JavaSerializer,数据序列化支持JavaSerializer和KryoSerializer。 操作步骤 Spark程序运行时,在shuffle和RDD Cache等过程中,会有大量的数据需要序列化,默认使用Java

    来自:帮助中心

    查看更多 →

  • 序列

    序列 SEQUENCE是Oracle对象,用于创建数字序列号。该序列用于创建自动编号字段,可用作主键。 如果参数MigSupportSequence设为true(默认值),则在PUBLIC模式中创建序列。 CACHE和ORDER参数不支持迁移。 Oracle中,序列的MAXVAL

    来自:帮助中心

    查看更多 →

  • 数据准备

    数据准备 项目管理接口 任务管理接口 模板管理接口 目录管理接口 页面控制接口 统计接口 北向接口 项目运行历史记录接口 订购退订接口 调测接口 内置任务接口 数据模型接口 父主题: API参考

    来自:帮助中心

    查看更多 →

  • 数据准备

    数据准备 管理工程 管理草稿 管理模板 附录 任务配置参考 父主题: 管理基础工具

    来自:帮助中心

    查看更多 →

  • 准备数据

    基于已设计好的热轧钢板表面缺陷标签准备图片数据。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example │ IMG_20180919_114732

    来自:帮助中心

    查看更多 →

  • 准备数据

    “编码”选择“UTF-8”格式。 以换行符作为分隔符,每行数据代表一个样本数据,单个样本不能有分行显示,不支持换行。 文本数据至少包含2个及以上的标签。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 多语种文本分类工作流仅支持对单语种的文本

    来自:帮助中心

    查看更多 →

  • 准备数据

    不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据集样本数应大于100,用于测试的已标注数据应不少于20张,样本数达1万张以上性能更优。 为了准确率,建议数据集中标注数据占总数

    来自:帮助中心

    查看更多 →

  • 数据准备

    数据准备 您需准备以下数据,并将数据上传到实景三维建模云平台,数据上传具体操作请参见数据上传。 原始相片数据(*.tiff或*.JPEG)-必选项。 影像POS文件(*.TXT或*. CS V)-可选项。 影像POS数据记录了影像的地理位置、姿态以及其他定位辅助信息,准确的影像POS

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 数据要求 受技术与成本多种因素制约, 文字识别 服务存在一些约束限制。 以 通用文字识别 API为例,输入数据存在以下约束。其他API的的使用约束请参见约束与限制。 只支持识别PNG、JPG、JPEG、BMP、TIFF格式的图片。 图像各边的像素大小在15px到8192px之间。

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 数据集版本发布失败 数据集版本不合格 父主题: 自动学习

    来自:帮助中心

    查看更多 →

  • 准备数据

    (可选)准备DWS数据源 如果您的数据需通过DWS发布到 TICS ,则您需要提前准备DWS数据源。 JDBC数据源支持DWS( GaussDB SQL)的连接,目前仅支持默认数据库为postgres的DWS数据源。这里介绍DWS(GaussDB SQL)准备数据的步骤: 购买DWS服

    来自:帮助中心

    查看更多 →

  • 数据准备

    数据准备 数据准备 以下数据和表结构是根据场景进行模拟的数据,并非真实数据。 以下数据需要提前存导入到MySQL\Hive\Oracle等用户所属数据源中,TICS本身不会持有这些数据,这些数据会通过用户购买的计算节点进行加密计算,保障数据安全。 政府信息提供方的数据tax和su

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 A方提供了待查询的用户ID数据,样例如下: blacklist_query.csv id 1914fd1aef9346e7a1b0a63c95aa918e 6b86b273ff34fce19d6b804eff5a3f57 66985617b4f74d14b4eceeaa25d61f5e

    来自:帮助中心

    查看更多 →

  • 数据准备

    (label)配置为字段类型:INTEGER,字段类别:标签。 图3 配置数据集参数 发布数据集。 图4 发布数据数据集发布的过程并不会直接从数据源中导出用户数据,仅从数据源处获取了数据集相关的元数据信息,用于任务的解析、验证等。 父主题: 测试步骤

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了