AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 原理 更多内容
  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • 背景及原理(服务编排)

    背景及原理(服务编排) AstroZero的服务编排,支持对逻辑判断组件、数据处理组件,以及脚本、子服务编排、商业对象等进行可视化组合编排,实现丰富的业务功能。 了解服务编排 在传统的开发中程序员一般是基于代码进行开发,程序员需要学习内容较多,开发效率相对低一些,开发门槛也高。A

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM 将根据源端的字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时的字段类型映射 CDM在 数据仓库 服务(Data Warehouse Service,简称DWS)中自动建表时,DWS的表与源表的字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • FederatedHPA工作原理

    展出的Pod调度到具有更多资源的集群,以解决单个集群的资源限制,提高故障发生时的恢复能力。 FederatedHPA工作原理 FederatedHPA的工作原理如图1,实现流程如下: HPA Controller通过API定期查询工作负载的指标数据。 karmada-apiser

    来自:帮助中心

    查看更多 →

  • Spark基本原理

    Spark基本原理 Spark简介 Spark是一个开源的,并行数据处理框架,能够帮助用户简单、快速的开发大数据应用,对数据进行离线处理、流式处理、交互式分析等。 Spark提供了一个快速的计算、写入及交互式查询的框架。相比于Hadoop,Spark拥有明显的性能优势。Spark

    来自:帮助中心

    查看更多 →

  • Hue基本原理

    Hue基本原理 Hue是一组WEB应用,用于和 MRS 大数据组件进行交互,能够帮助用户浏览HDFS,进行Hive查询,启动MapReduce任务等,它承载了与所有MRS大数据组件交互的应用。 Hue主要包括了文件浏览器和查询编辑器的功能: 文件浏览器能够允许用户直接通过界面浏览以及操作HDFS的不同目录;

    来自:帮助中心

    查看更多 →

  • Storm基本原理

    易于调试:CQL提供了详细的异常码说明,降低了用户对各种错误的处理难度。 关于Storm的架构和详细原理介绍,请参见:https://storm.apache.org/。 Storm原理 基本概念 表1 概念介绍 概念 说明 Tuple Storm核心数据结构,是消息传递的基本单元,

    来自:帮助中心

    查看更多 →

  • Flink基本原理

    Flink基本原理 Flink简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景

    来自:帮助中心

    查看更多 →

  • YARN基本原理

    YARN基本原理 为了实现一个Hadoop集群的集群共享、可伸缩性和可靠性,并消除早期MapReduce框架中的JobTracker性能瓶颈,开源社区引入了统一的资源管理框架YARN。 YARN是将JobTracker的两个主要功能(资源管理和作业调度/监控)分离,主要方法是创建

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩的控制器,HPA周期性检查Pod的度量数据,计算满足HPA资源所配置的目标数值所需的副本数量,进而调整目标资源(如Deployment)的replicas字段。

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 CCE支持多种工作负载伸缩方式,策略对比如下: 表1 弹性伸缩策略对比 伸缩策略 HPA策略 CronHPA策略 CustomedHPA策略 VPA策略 AHPA策略 策略介绍 Kubernetes中实现POD水平自动伸缩的功能,即Horizontal Pod Autoscaling。

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM将根据源端的字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时的字段类型映射 CDM在数据仓库服务(Data Warehouse Service,简称DWS)中自动建表时,DWS的表与源表的字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • HBase基本原理

    HBase基本原理 数据存储使用HBase来承接,HBase是一个开源的、面向列(Column-Oriented)、适合存储海量非结构化数据或半结构化数据的、具备高可靠性、高性能、可灵活扩展伸缩的、支持实时数据读写的分布式存储系统。更多关于HBase的信息,请参见:https://hbase

    来自:帮助中心

    查看更多 →

  • Hive基本原理

    Hive基本原理 Hive是建立在Hadoop上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。Hive定义了简单的类SQL查询语言,称为HQL,它允许熟悉SQL的用户查询数据。

    来自:帮助中心

    查看更多 →

  • Kafka基本原理

    Group1与Consumer Group2中。 关于Kafka架构和详细原理介绍,请参见:https://kafka.apache.org/24/documentation.html。 Kafka原理 消息可靠性 Kafka Broker收到消息后,会持久化到磁盘,同时,To

    来自:帮助中心

    查看更多 →

  • HetuEngine基本原理

    HetuEngine基本原理 HetuEngine简介 HetuEngine是自研高性能交互式SQL分析及数据虚拟化引擎。与大数据生态无缝融合,实现海量数据秒级交互式查询;支持跨源跨域统一访问,使能 数据湖 内、湖间、湖仓一站式SQL融合分析。 HetuEngine结构 HetuEn

    来自:帮助中心

    查看更多 →

  • 如何快速发现网站漏洞?

    漏洞扫描的原理是,通过爬虫获取用户网站的URL列表,然后对列表中所有URL进行扫描。 如果用户需要快速扫描,可以在创建扫描任务时,“扫描策略”选择“极速策略”,如图1所示。 扫描策略分为:极速策略、标准策略、深度策略。选择深度扫描可以更深层次的发现漏洞,建议您优先选择“深度策略”。

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    200USD 考试内容 HCIA-AI V3.0考试包含人工智能基础知识、机器学习深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8%

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了