华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 纹理特征 更多内容
  • 身份认证与访问控制

    受到这些访问规则的保护。 安全组介绍 Web应用防火墙 华为云Web应用防火墙WAF对网站业务流量进行多维度监测和防护,结合深度机器学习智能识别恶意请求特征和防御未知威胁,全面避免网站被黑客恶意攻击和入侵。 WAF介绍 父主题: 安全

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 安全服务

    Web应用防火墙 Web应用防火墙(Web Application Firewall,WAF)对网站业务流量进行多维度检测和防护,结合深度机器学习智能识别恶意请求特征和防御未知威胁,阻挡诸如 SQL注入或跨站脚本等常见攻击,避免这些攻击影响Web应用程序的可用性、安全性或消耗过度的资源,降低数据被篡改、失窃的风险。

    来自:帮助中心

    查看更多 →

  • 特征工程和算法工程的关系?

    特征工程和算法工程的关系? 用户创建特征工程的时候,进入特征工程,可以看到系统自动创建的与特征工程同名的算法工程。支持在同一个特征工程中创建多个算法工程,操作如下所示: 在JupyterLab环境编辑界面,单击界面左上角的“File > New Launcher”,界面右侧新增“

    来自:帮助中心

    查看更多 →

  • 数据准备

    乳腺癌数据集从UCI获取,该数据集只包含连续类型特征,因此对所有特征使用Scikit-Learn的StandardScaler进行了归一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 大数据分析

    能应用在其中起到了不可替代的作用。 游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。

    来自:帮助中心

    查看更多 →

  • 应用进程控制概述

    应用进程控制使用流程说明 操作项 描述 创建白名单策略 白名单策略是管理HSS学习 服务器 行为和应用进程防护动作的规则,只有关联了白名单策略的服务器才能开启应用进程防护。 确认学习结果 HSS学习完服务器中的应用进程后,可能存在某些可疑应用进程的特征不明显,HSS无法完全定义为恶意进程或可信进程,因此这些

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 训练型横向联邦作业流程

    训练型横向联邦作业流程 联邦学习分为横向联邦及纵向联邦。相同行业间,特征一致,数据主体不同,采用横向联邦。不同行业间,数据主体一致,特征不同,采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业 配置作业的执行脚本,训练模型文件。

    来自:帮助中心

    查看更多 →

  • JupyterLab开发平台

    JupyterLab开发平台 创建特征工程 数据处理 模型训练 迁移学习 学件 模型归档 如何恢复异常的JupyterLab环境 父主题: 特征工程

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    200USD 考试内容 HCIA-AI V3.0考试包含人工智能基础知识、机器学习深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8%

    来自:帮助中心

    查看更多 →

  • 关闭应用进程控制防护

    单击“确认”。 在策略列表中,查看目标策略。 关闭防护,但保留HSS学习到的服务器应用进程特征。 查看目标策略的策略状态为“学习完成,未生效”,表示关闭应用进程防护成功。 关闭防护,并删除HSS学习到的服务器应用进程特征。 目标策略已从策略列表中删除,表示关闭应用进程防护成功。 关闭单台服务器防护

    来自:帮助中心

    查看更多 →

  • 获取纵向联邦作业详情

    SAMPLE_ALIGNMENT.样本对齐,FEATURE_SELECTION.特征选择,MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate String 纵向联邦算法学习率,最大长度16 label_dataset String

    来自:帮助中心

    查看更多 →

  • 保存纵向联邦作业

    SAMPLE_ALIGNMENT.样本对齐,FEATURE_SELECTION.特征选择,MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate 否 String 纵向联邦算法学习率,最大长度16 label_dataset 否

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦分箱和IV计算作业

    of DatasetFeatureEntity objects 数据集特征列 label 是 String 标签列,最大值1000 featuresList 是 Map<String,Array<String>> 特征信息 instance_id 否 String 实例id,最大32位,由字母和数字组成

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了