AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度强化学习+学习率 更多内容
  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习学习衰减、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 漫游调优

    略(是否能引导,什么时候引导,引导到哪个AP),提升漫游成功率,降低漫游过程的丢包,时延,提升终端漫游体验。 以终端类型识别为基础,采用强化学习算法进行在线终端画像实时训练,与设备侧、终端侧协同提升漫游体验。 终端下行信号测量:基于Wi-Fi 802.11k,Wi-Fi 802.

    来自:帮助中心

    查看更多 →

  • 准备工作

    (计算空泡),从而提高训练效率。 学习预热 不同的学习调度器(决定什么阶段用多大的学习)有不同的学习调度相关超参,例如线性调度可以选择从一个初始学习lr-warmup-init开始预热。您可以选择多少比例的训练迭代步使用预热阶段的学习。不同的训练框架有不同的参数命名,需要结合代码实现设置对应的参数。

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    对模型进行评估和考察。经常不能一次性获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如准确、召回、AUC等,能帮助您有效的评估,最终获得一个满意的模型。 部署模型 模型的开发训练,是基于之前的已有数据(有可能是测试数据),而在得到一

    来自:帮助中心

    查看更多 →

  • 应用场景

    生成用户的兴趣标签,提供离线、近线、在线三层计算,完成千人千面的个性化媒资推荐。 场景优势 可以实现7*24小时,智能学习用户行为,构建兴趣模型。 兴趣文章命中高,用户粘性增强,PV增幅明显。 减少人工运营规则的摄入,减低人力成本。 全流程自动化,批/流训练结合,稳定可靠。 图2

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行综合考虑,依次计算出更新步长。 学习:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    适合企业高并发,场景多,需要更高准确的场景,包括以下功能模块: 包含“基础版”功能,以及以下功能。 问答标签管理 问答模型训练管理 专业版 适合企业复杂对话流程,需要多轮对话的场景,包括以下功能模块: 包含“高级版”功能,以及以下功能。 多轮技能管理 知识共享 应用授权 旗舰版 适用于对机器人答准有高要求,数据样本大的场景,包括以下功能模块:

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    以调整学习。取值范围:(0,1)。 权重衰减系数 用于定义权重衰减的系数。权重衰减是一种正则化技术,可以防止模型过拟合。取值需≥0。 学习 用于定义学习的大小。学习决定了模型参数在每次更新时变化的幅度。如果学习过大,模型可能会在最优解附近震荡而无法收敛。如果学习过小,

    来自:帮助中心

    查看更多 →

  • 常用概念

    一进多出 转码的一种方式,是指一个视频源文件在一个转码任务中输出多个分辨、码率的视频文件,以满足不同终端、不同网速的播放需求。 画质增强 是指通过传统成熟的超分辨算法与AI深度学习的画质增强算法相结合,达到视频分辨提升、视频画质提升等效果,可用于2K视频转4K视频、修复视频的受损图像,提升已有视频播放画质等效果。

    来自:帮助中心

    查看更多 →

  • 方案概述

    公司整装等业务截流,寻求业务范围扩张(如定制企业升级整家、成品企业增加定制模块等),但转型难度大; 线上投放获客成本高,线下竞争激烈,转单低; 企业内部IT系统多数是本地端,多个供应商提供,烟囱林立,数据管理混乱; 企业数字化水平普遍较弱,大部分企业没有成熟的IT团队,无法驾驭多个系统的管理工作;

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 场景介绍

    Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    learning_rate 学习 学习是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习热启动比例 学习热启动参数,一开始以较小的学习去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了