AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    目前深度学习主要包括 更多内容
  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • SA与HSS服务的区别?

    服务功能区别 SA通过采集全网安全数据(包括HSS、WAF、AntiDDoS等安全服务检测数据),使用大数据AI、机器学习等分析技术,从资产安全、威胁告警、漏洞管理、基线检查维度,分类呈现资产安全状况。 HSS通过在主机中安装Agent,使用AI、机器学习深度算法等技术分析主机中风险,并从

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于 自然语言处理 (NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略 PPO强化学习(Proximal Policy

    来自:帮助中心

    查看更多 →

  • 系统自动生成策略包括哪些防护规则?

    系统自动生成策略包括哪些防护规则? 在添加防护网站进行“策略配置”时,您可以选择已创建的防护策略或默认的“系统自动生成策略”,系统自动生成的策略相关说明如表1所示。 入门版、标准版只能选择“系统自动生成策略”。 您也可以在 域名 接入后根据防护需求配置防护规则。 表1 系统自动生成策略说明

    来自:帮助中心

    查看更多 →

  • 漏洞扫描报告模板包括哪些内容?

    漏洞扫描报告模板包括哪些内容? 当扫描任务成功完成后,您可以下载任务报告,报告目前只支持PDF格式。 网站漏洞扫描 报告模板说明 下载扫描报告后,您可以根据扫描结果,对漏洞进行修复,报告模板主要内容说明如下: 概览 查看目标网站的扫描漏洞数。 图1 查看任务概览信息 漏洞分析概览 统计漏洞类型及分布情况。

    来自:帮助中心

    查看更多 →

  • 业务报表

    图3 实操报表 课程报表 课程报表主要展示学员学习课程的数据,具体学习课程明细,可单击【课程报表详情】 操作路径:报表-业务报表-课程报表 图4 课程报表 考试报表 考试报表主要展示学员考试的数据,具体考试明细,可单击【考试报表详情】 操作路径:报表-业务报表-考试报表 图5 考试报表

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    务效率。 媒资图像标签 基于深度学习技术,准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解图像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 图1 媒资图像标签示例图 名人识别 利用深度神经网络模型对图片内容进行检

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 在线课程

    在线课程是用户进入学习的入口。在这里,用户可以轻松浏览到目前平台上线的学习内容,并根据自己的兴趣选择相应的分类进行浏览。 通过在线课程功能,用户可以在学习过程中的每一个环节都得到支持。不论在学习理论知识,还是在进行实际的沙箱实践,系统都将为用户提供必要的资源和工具,让学习更加高效、便捷。

    来自:帮助中心

    查看更多 →

  • RES的离线数据源包括什么?

    RES的离线数据源包括什么? 离线数据包括如下几张表: 用户属性表 物品属性表 用户操作行为表 每张表的字段描述和规范详情请参见《推荐系统用户指南》中准备离线数据源章节。 父主题: 数据源

    来自:帮助中心

    查看更多 →

  • GPU加速型

    TOPS 机器学习深度学习、训练推理、科学计算、地震分析、计算金融学、渲染、多媒体编解码。 支持开启/关闭超线程功能,详细内容请参见开启/关闭超线程。 推理加速型 Pi1 NVIDIA P4(GPU直通) 2560 5.5TFLOPS 单精度浮点计算 机器学习深度学习、训练推理、

    来自:帮助中心

    查看更多 →

  • 场景介绍

    其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略 PPO强化学习(Proximal Policy

    来自:帮助中心

    查看更多 →

  • 概要

    Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    等技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 演练规划主要做什么?

    演练规划主要做什么? 演练规划能够帮助演练管理人员对故障模式进行演练排期,管理演练进展,是故障模式能够通过演练进行实战检验的管理保障。 父主题: 韧性中心常见问题

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online快速开发、发布 WeLink 应用。 4-基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略 PPO强化学习(Proximal Policy

    来自:帮助中心

    查看更多 →

  • 哪里可以了解Atlas800训练服务器硬件相关内容

    本文提供Atlas800训练 服务器 硬件相关指南,包括三维视图、备件信息、HCCL常用方法以及网卡配置信息。 Atlas 800训练服务器三维视图 Atlas 800 训练服务器(型号9000)是基于华为鲲鹏920+Snt9处理器的AI训练服务器,实现完全自主可控,广泛应用于深度学习模型开发和AI训练服务场景,可单击此处查看硬件三维视图。

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的服务器后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了