量化交易与深度学习 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 量化

    量化 W4A16量化 W8A8量化 W8A16量化 kv-cache-int8量化 父主题: 推理关键特性使用

    来自:帮助中心

    查看更多 →

  • 量化

    量化 W4A16量化 W8A8量化 W8A16量化 kv-cache-int8量化 父主题: 推理关键特性使用

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持用户自定义隐私策略,实现敏感数据的识别、脱敏、水印保护,保障隐私数据安全; 多方协同过程中隐私信息交互(SQL JOIN数据碰撞、可信联邦学习模型参数)的加密保护; 支持安全多方计算,如基于隐私集合求PSI(Private Set Intersection)技术的多方样本对齐、 基于差分隐私、加法同态、秘密共享等技术的训练模型保护;

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel,W8A16

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。多模态只支持hf上下载的awq权重,可跳过步骤一。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:per-group Step1 模型量化 可以在Huggingfac

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    数据选择 图4 样本粗筛 (可选步骤) 样本对齐,支持使用新对齐的结果,如图5所示;也支持复用隐私求作业中通过这两个数据集计算得到的结果,如图6所示。 图5 使用新对齐结果 图6 复用隐私求作业中的结果 (可选步骤)进行特征选择,此步骤要求数据已经对齐,即两方数据集每一行的数据都是一一对应的。

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel,

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel,W8A16

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel,W8A16

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了