AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    超声波探测物品 深度学习 更多内容
  • 排序策略-离线排序模型

    将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。 DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解机参数说明 参数名称 说明 名称 自定义策略名称,由中文、英文、数字、下

    来自:帮助中心

    查看更多 →

  • 更新智能场景内容

    行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type 否 String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    等技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成

    来自:帮助中心

    查看更多 →

  • 产品优势

    优质的网络资源解决跨国跨网访问问题,全面提升访问速度和质量。 自研技术,业界领先 智能路由,基于接入位置、网络质量等因素的探测及最优路由计算,加速20%+ 华为自研技术,软硬件深度集成和兼容,提升服务性能。 安全传输,稳定可靠 支持全链路HTTPS安全传输,多种高级安全控制功能,保障服务稳定进行,确保数据安全。

    来自:帮助中心

    查看更多 →

  • 执行作业

    横向评估型作业在作业配置页面单击“保存”按钮后,可以直接单击“执行”按钮。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的作业,单击“执行”,系统自动跳转到“历史作业”页面。 图1 执行作业 等待执行完成,在“历史作

    来自:帮助中心

    查看更多 →

  • 离线数据源

    000312" } 物品属性表 物品属性表记录物品的属性信息,例如类别、长度等,属性名和属性值成对出现。 表3 字段描述 字段名 类型 描述 是否必选 itemId String 物品ID,唯一标识。 是 itemProperties String 描述物品的key-value信

    来自:帮助中心

    查看更多 →

  • 过滤规则

    ew行为的物品(如新闻)过滤,使之不进入候选集。 行为类型包括。 view:物品曝光 click:用户点击物品 collect:用户收藏了某个物品 uncollect:用户取消收藏某个物品 search_click:用户点击搜索结果中的物品 comment:用户对物品的评论 share:分享

    来自:帮助中心

    查看更多 →

  • 查询数据源详情

    行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization

    来自:帮助中心

    查看更多 →

  • 数据源管理简介

    ,包括用户数据、物品数据和行为数据。 用户数据 用户数据包括数据源中的“用户属性表”和用于近线计算的“用户画像”数据。用户数据记录用户的属性信息,例如地域、爱好等。 物品数据 物品数据包括数据源中的“物品属性表”和用于近线计算的“物品画像”数据。物品数据记录物品的属性信息,例如类别、长度等。

    来自:帮助中心

    查看更多 →

  • 准备离线数据源

    tring/strArray/location格式的数据。 否 物品数据 表2 物品数据字段描述 字段名 类型 描述 是否必选 itemId String 全局唯一物品ID。 是 itemType String 物品的类型,可用于对推荐结果集的多样性控制。包含: item article

    来自:帮助中心

    查看更多 →

  • 实时日志

    是商品的id(itemId)的值。 是 actionType String 行为类型: 物品曝光 用户点击物品 用户收藏了某个物品 用户取消收藏某个物品 用户点击搜索结果中的物品 用户对物品的评论 分享 点赞 点衰 评分 消费 观看视频/听音乐/阅读 是 actionMeasure

    来自:帮助中心

    查看更多 →

  • 数据导入

    宽表:推荐系统内部格式,以行为数据为主,将行为数据中涉及到的用户数据和物品数据整合成一条数据。 画像:画像分为用户画像和物品画像,分别用于存储用户输入的用户特征和物品特征。如果同一用户或物品有多条记录,将会按照用户ID或者物品ID去重。 前提条件 已按照创建离线数据源操作指导完成数据源的创建。

    来自:帮助中心

    查看更多 →

  • 推荐结果多样性打散

    本实践针对用户的单次推荐预测请求,在返回的物品列表中,对规定的属性进行打散,避免推荐结果出现同一属性物品扎堆出现的现象。 本实践的基本流程如下: 准备工作 创建数据源 配置在线服务参数 获取推荐结果 准备工作 已注册华为云帐号,并且账号为可用状态。 确保用户选择的属性在物品表存在相应的字段属性,若不存在,统一按照默认(不打散)处理。

    来自:帮助中心

    查看更多 →

  • 查询并导出课程学习记录

    查询并导出课程学习记录 前提条件 用户具有“查询课程记录”权限 操作步骤: 登录ISDP系统,选择“作业人员->学习管理->学习记录”,查询课程学习记录 点击顶部“课程学习记录”可以在这里对学习记录进行查询以及导出,筛选说明如下表: 图1 课程记录查询条件 表1 “课程学习记录”筛选项

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱和IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 计费说明

    务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。简单场景工作量预计不超过17人天 300,000.00 每套 AI算法原型开发-标准版 对业务场景为普通场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天

    来自:帮助中心

    查看更多 →

  • 组合作业

    通用数据由特征工程“初始用户画像-物品画像-标准宽表生成”算子生成。其路径与“初始用户画像-物品画像-标准宽表生成”结果保存路径一致。 说明: 在使用通用格式数据之前,需要先进行特征工程算子计算。 通用格式数据:从用户属性表、物品属性表和用户操作行为表中提取用户、物品特征和用户行为,并生成JSON数据,即内部通用格式。

    来自:帮助中心

    查看更多 →

  • 获取推荐结果

    在线上策略使用到关联推荐召回策略时需要提供。例如,给用户推荐物品,主体是用户,客体是物品;给物品推荐用户,主体是物品,客体是用户;给用户推荐用户,主体是用户,客体是用户;给物品推荐物品,主体是物品,客体是物品。 纯排序场景中,该参数为传入待排序物品列表的字段,传入物品集供模型排序使用。 rec_num -

    来自:帮助中心

    查看更多 →

  • 实施步骤

    ⼯⼚模块:⼯⼚在APS中主要起到数据的归组的作⽤,如资源、物品、BOM等都是可以按⼯⼚进⾏分组 图5 ⼯⼚管理界面 库存点物品:在库存点物品管理界⾯可对相关库存点物品进⾏设定。库存点物品(以下简称为物品)可维护成品、半成品、原材料等物品主档信息,包括物品代码、名称、规格属性、计划属性、⽣产属性、采购属性、销售属性等信息。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了