AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    python深度学习与量化交易 更多内容
  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 kubectl

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • Python

    参数值。 bootstrap_servers:实例连接地址端口。 topic_name:Topic名称。 sasl_plain_username/sasl_plain_password:首次开启密文接入时设置的用户名密码,或者创建用户时设置的用户名和密码。为了确保用户名和密码

    来自:帮助中心

    查看更多 →

  • Python

    requests 如果pip安装requests遇到证书错误,请下载并使用Python执行此文件,升级pip,然后再执行以上命令安装。 在IDEA中安装Python插件,如下图所示。 获取SDK 点此下载SDKDemo。 解压后目录结构如下: 名称 说明 apig_sdk\__init__

    来自:帮助中心

    查看更多 →

  • Python

    a492300" #模板ID #条件必填,国内短信关注,当templateId指定的模板类型为通用模板时生效且必填,必须是已审核通过的,模板类型一致的签名名称 signature = "华为云短信测试" #签名名称 # 必填,全局号码格式(包含国家码),示例:+86151****6789

    来自:帮助中心

    查看更多 →

  • Python

    连接主机的用户需要具有主机/tmp目录下文件的创建执行权限。 Shell和Python脚本都是发往E CS 主机的/tmp目录下去运行的,需要确保/tmp目录磁盘不被占满。 参数 否 填写执行Python语句时,向语句传递的参数,参数之间使用空格分隔,例如:a b c。此处的“参数”需要在Python语句中引用,否则配置无效。

    来自:帮助中心

    查看更多 →

  • Python

    Python 样例 语音验证码场景API、呼叫状态通知API、话单通知API 环境要求 Python 3.0及以上版本。 引用库 requests 2.18.1 请自行下载安装Python 3.x,并完成环境配置。 打开命令行窗口,执行pip install requests命令。

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel,

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户, vLLM使用transformers版本awq冲突,需要切换

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 kubectl

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 文本向量化

    响应Body参数 参数 参数类型 描述 data Array of Embedding objects 向量化结果。 model String 实际转发后调用的模型名称,请求体中model可能不同。 object String 固定值‘list’。 usage usage object

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:per-group Step1 模型量化 可以在Huggingfac

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户, vLLM使用transformers版本awq冲突,需要切换

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了