intel深度学习加速 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • Intel MPI

    Intel MPI 操作场景 本节指导用户在E CS 上安装和使用Intel MPI应用(以版本l_mpi_2018.0.128为例)。 前提条件 已配置 弹性云服务器 免密登录。 操作步骤 安装Intel MPI。 下载Intel MPI。 下载地址:https://software.intel

    来自:帮助中心

    查看更多 →

  • x86 V5实例(CPU采用Intel Skylake架构)

    2*18 Core Intel Xeon Gold 6151 V5 (3.00 GHz) 384 DDR4 RAM (GB) 无 2 x 2*10GE + SDI卡 GPU加速型 提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。特别适合于深度学习、科学计算、CAE、3D动画渲染、CAD等应用。

    来自:帮助中心

    查看更多 →

  • Intel MPI

    Intel MPI 操作场景 该任务指导用户在BMS集群上运行Intel MPI应用(l_mpi_2017.3.196版本)。 前提条件 已配置BMS集群间互相免密登录。 集群中所有的BMS,均已安装Spectrum MPI。 操作步骤 关闭防火墙。 登录集群中任意一台BMS。 执行以下命令,关闭BMS防火墙。

    来自:帮助中心

    查看更多 →

  • x86 V4实例(CPU采用Intel Broadwell架构)

    SSD 2 x 2*10GE GPU加速型 GPU加速型实例包括计算加速型(P系列)和图形加速型(G系列),提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。特别适合于深度学习、科学计算、CAE、3D动画渲染、CAD等应用。 表5 GPU加速型规格详情 规格名称/ID CPU

    来自:帮助中心

    查看更多 →

  • 安装和使用Intel MPI

    安装和使用Intel MPI 操作场景 本节指导用户在BMS集群上安装和使用Intel MPI应用(以版本l_mpi_2018.0.128为例)。 对于集群中的每台BMS,都需要执行该操作。 前提条件 已配置BMS集群间互相免密登录。 操作步骤 安装Intel MPI。 下载Intel

    来自:帮助中心

    查看更多 →

  • Intel oneAPI Toolkit运行VASP任务,为什么概率性运行失败?

    Intel oneAPI Toolkit运行VASP任务,为什么概率性运行失败? Intel oneAPI Toolkit(Intel并行计算平台)运行的VASP(用于电子结构计算和量子力学-分子动力学模拟)任务对CPU硬件版本有深度依赖,在小规格Pod场景下概率性运行失败,建议

    来自:帮助中心

    查看更多 →

  • x86 V6实例(CPU采用Intel Cascade Lake架构)

    xlarge 2*22 Core Intel Cascade Lake 6266 V6 (3.00 GHz) 192 DDR4 RAM (GB) 无 100Ge RDMA(Mellanox)+ SDI 3.0 (40GE) GPU加速型 采用Intel Cascade Lake CPU、NVIDIA

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入弹性 云服务器 列表页面。 在待深度诊断的ECS的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    算力,大数据等技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。

    来自:帮助中心

    查看更多 →

  • GPU加速型

    荐使用主售机型 图像加速G系列 图形加速增强型G6v 图形加速增强型G6 图形加速增强型G5 图形加速增强型G3 图形加速型G1 计算加速P系列 计算加速型P2vs 计算加速型P2s(主售) 计算加速型P2v 计算加速型P1 推理加速型Pi2(主售) 推理加速型Pi1 相关操作链接:

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspeed-

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了