GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    gpu深度学习加速 更多内容
  • GPU计算型

    GPU计算型 GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为云E CS 的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 调度概述

    使用Kubernetes默认GPU调度 GPU虚拟化 GPU虚拟化能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。 GPU虚拟化 NPU调度

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    案例参考: 从0制作 自定义镜像 用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • GPU加速云服务器出现NVIDIA内核崩溃,如何解决?

    GPU加速云服务器 出现NVIDIA内核崩溃,如何解决? 问题描述 GPU加速 云服务器 在运行过程中发生crash,重启 服务器 后检查日志,发现没有打印NVIDIA驱动堆栈日志。 图1 堆栈日志信息 可能原因 云服务器在运行过程中遇到NVIDIA官方驱动bug,导致云服务器内核崩溃。

    来自:帮助中心

    查看更多 →

  • 大数据分析

    人工智能应用在其中起到了不可替代的作用。 游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。

    来自:帮助中心

    查看更多 →

  • 节点规格说明

    AD等。 P系列:计算加速型或推理加速 弹性云服务器 ,适合于深度学习、科学计算、CAE等。 表21 GPU加速实例总览 类别 实例 GPU显卡 单卡Cuda Core数量 单卡GPU性能 使用场景 支持集群类型 图形加速型 G6 NVIDIA T4(GPU直通) 2560 8.1TFLOPS

    来自:帮助中心

    查看更多 →

  • 什么是云容器实例

    图2 产品架构 基于云平台底层网络和存储服务(VPC、ELB、NAT、EVS、OBS、SFS等),提供丰富的网络和存储功能。 提供高性能、异构的基础设施(x86服务器GPU加速服务器、Ascend加速服务器),容器直接运行在物理服务器上。 使用Kata容器提供虚拟机级别的安

    来自:帮助中心

    查看更多 →

  • 监控GPU资源指标

    GPUGPU时钟频率 cce_gpu_memory_clock GPUGPU显存频率 cce_gpu_graphics_clock GPUGPU图形处理器频率 cce_gpu_video_clock GPUGPU视频处理器频率 物理状态数据 cce_gpu_temperature

    来自:帮助中心

    查看更多 →

  • GPU设备显示异常

    是,该驱动版本与镜像可能存在兼容性问题,建议更换驱动版本,操作指导,请参考安装GPU驱动。 否,请执行下一步。 请尝试重启云服务器,再执行nvidia-smi查看GPU使用情况,确认是否正常。 如果问题依然存在,请联系客服。 父主题: GPU驱动故障

    来自:帮助中心

    查看更多 →

  • GPU设备检查

    GPU设备检查 功能 检查节点是否存在gpu设备,gpu驱动是否安装且运行正常。 语法 edgectl check gpu 参数说明 无 使用示例 检查节点GPU设备: edgectl check gpu 检查成功返回结果: +-----------------------+ |

    来自:帮助中心

    查看更多 →

  • GPU驱动故障

    GPU驱动故障 G系列弹性云服务器GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

  • GPU视图

    计算公式:节点上容器显存使用总量/节点上显存总量 GPU卡-显存使用量 字节 显卡上容器显存使用总量 GPU卡-算力使用率 百分比 每张GPU卡的算力使用率 计算公式:显卡上容器算力使用总量/显卡的算力总量 GPU卡-温度 摄氏度 每张GPU卡的温度 GPU-显存频率 赫兹 每张GPU卡的显存频率 GPU卡-PCle带宽

    来自:帮助中心

    查看更多 →

  • 内存加速

    内存加速 开启内存加速,MySQL数据更新后,会把数据全部缓存到GeminiDB Redis吗? 开启内存加速,GeminiDB Redis数据会不断增长,需要扩容吗?如何进行缓存数据管理? 客户已有业务实现“db”+“缓存”,推荐使用内存加速吗?哪种场景可以让客户使用内存加速方案?

    来自:帮助中心

    查看更多 →

  • 弹性伸缩概述

    够多的节点来调度新扩容的Pod,那么就需要为集群增加节点,从而保证业务能够正常提供服务。 弹性伸缩在CCE上的使用场景非常广泛,典型的场景包含在线业务弹性、大规模计算训练、深度学习GPU或共享GPU的训练与推理、定时周期性负载变化等。 CCE弹性伸缩 CCE的弹性伸缩能力分为如下两个维度:

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了