GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    GPU跑深度学习会烧起来吗 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • GPU加速型

    G6v型 云服务器 ,关机后基础资源(包括vCPU、内存、镜像、GPU)不计费,但系统盘仍会收取容量对应的费用。 如有其他绑定的产品,如云硬盘、弹性公网IP、带宽等,按各自产品的计费方法进行收费。 G6v型云 服务器 ,关机后资源会被释放,下次开机时如果后台资源不足,可能导致云服务器开机失败。如果您需要长期使

    来自:帮助中心

    查看更多 →

  • 大数据分析

    、趴、跳、)、交互(救人、拾取、换弹)等操作,产生复杂的组合动作空间,可行动作数量在10^7量级。对于CPU计算能力要求较高。 训练任务快速部署:客户进行AI强化学习时,需要短时间(10mins)拉起上万核CPU,对动态扩容能力要求较高。 竞享实例的应用 该AI学习引擎采用竞享

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    当前实例的/etc/fstab文件中配置的某个设备不存在,可能导致实例无法启动。 guestos.filesystem.device_mount_failure fstab中的设备挂载状态检查 该实例存在未在/etc/fstab中配置自动挂载的云盘,可能导致实例无法启动。 guestos.filesystem

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 基于GPU监控指标的工作负载弹性伸缩配置 GPU虚拟化节点弹性伸缩配置 GPU故障处理 父主题: 调度

    来自:帮助中心

    查看更多 →

  • GPU驱动概述

    GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 功能介绍

    部分深度学习模型参数 一键式模型部署和API发布,提供深度学习模型的快速部署功能,支持GPU资源分配、弹性扩容、模型迭代发布、应用监控和统计分析,轻松实现AI能力服务化。 图19 模型部署发布平台 平台基于模型训练结果,面向典型业务场景与应用需求,可提供遥感影像在线智能解译能力,包括遥感影像的单

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    可通过如下方式进行调整优化。 优化原理 对于ModelArts提供的GPU资源池,每个训练节点挂载500GB的NVMe类型SSD提供给用户免费使用。此SSD挂载到“/cache”目录,“/cache”目录下的数据生命周期与训练作业生命周期相同,当训练作业运行结束以后“/cach

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    单个课程的详情页面 学习视频章节时,支持视频的竖屏、横屏播放。 每个章节学习到最后的时候,提示“第X章节完成学习”,该章节会自动变成完成状态。 图8 使用数据网络时的提示页面 学习PDF类型的章节。 学习PDF之前需要先下载下来,然后使用第三方软件打开学习。 图9 打开PDF之前需要先下载下来

    来自:帮助中心

    查看更多 →

  • 调度概述

    源调度、GPU/NPU异构资源调度、Volcano调度的主要功能。 CPU调度 CCE提供CPU管理策略为应用分配完整的CPU物理核,提升应用性能,减少应用的调度延迟。 功能 描述 参考文档 CPU管理策略 当节点上运行了很多 CPU 密集的 Pod 时,工作负载可能迁移到不同的

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    图10 卸载CUDA驱动 CUDA库卸载成功,返回”Successfully uninstalled”。 移除CUDA库和cuDNN库: rm –rf /usr/local/cuda-11.2 父主题: 管理GPU加速型E CS GPU驱动

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU调度概述 准备GPU资源 创建GPU应用 监控GPU资源 父主题: 管理本地集群

    来自:帮助中心

    查看更多 →

  • 创建GPU函数

    创建GPU函数 GPU函数概述 自定义镜像 方式创建GPU函数 定制运行时方式创建GPU函数 父主题: 创建函数

    来自:帮助中心

    查看更多 →

  • GPU调度概述

    GPU调度概述 工作负载支持使用节点GPU资源,GPU资源使用可以分为如下两种模式: GPU静态分配(共享/独享):按比例给Pod分配GPU显卡资源,支持独享(分配单张/多张显卡)和共享(部分显卡)方式。 GPU虚拟化:UCS On Premises GPU采用xGPU虚拟化技术

    来自:帮助中心

    查看更多 →

  • GPU故障处理

    ERROR(发生ECC故障的记录)。 Correctable Error:不会影响业务,不会触发GPU隔离。 Uncorrectable Error:导致业务中断,触发GPU隔离。 若存在Uncorrectable Error,可以尝试通过以下手段恢复: 配置目标节点污点(taints),驱逐目标节点存量的业务负载。

    来自:帮助中心

    查看更多 →

  • 约束与限制

    NVIDIA GPU驱动版本 CUDA Toolkit版本 460.106 CUDA 11.2.2 Update 2 及以下 418.126 CUDA 10.1 (10.1.105)及以下 GPU镜像 CUDA和cuDNN都是与GPU相关的技术,用于加速各种计算任务,特别是深度学习任务。在使用NVIDIA

    来自:帮助中心

    查看更多 →

  • 负载伸缩概述

    由于企业应用流量的不断变化,容器工作负载的资源需求也在不断变化。在部署、管理容器工作负载时,若时刻保持业务高峰期的资源数量,造成大量的资源浪费;若为工作负载设置资源限制,则达到资源使用上限后可能造成应用异常。Kubernetes中的HPA(Horizontal Pod Autoscaler)策略可

    来自:帮助中心

    查看更多 →

  • GPU计算型

    GPU计算型 GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为云ECS的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了