int转时间 更多内容
  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表1。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    pe类型不影响int8的scale系数的抽取和加载。 启动kv-cache-int8-per-tensor量化服务。 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8_pertensor #只支持int8,表示kvint8

    来自:帮助中心

    查看更多 →

  • kv-cache-int8量化

    pe类型不影响int8的scale系数的抽取和加载。 启动kv-cache-int8-per-tensor量化服务。 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8_pertensor #只支持int8,表示kvint8

    来自:帮助中心

    查看更多 →

  • kv-cache-int8量化

    pe类型不影响int8的scale系数的抽取和加载。 启动kv-cache-int8-per-tensor量化服务。 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8_pertensor #只支持int8,表示kvint8

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    pe类型不影响int8的scale系数的抽取和加载。 启动kv-cache-int8-per-tensor量化服务。 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8_pertensor #只支持int8,表示kvint8

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    pe类型不影响int8的scale系数的抽取和加载。 启动kv-cache-int8-per-tensor量化服务。 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8_pertensor #只支持int8,表示kvint8

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • 在CodeArts TestPlan中调用日期转时间戳函数

    如下图所示,请求头中参数“date”的值为日期时间戳函数,函数中的参数A为环境参数“date”。 请求体 如下图所示,请求体中应用了日期时间戳函数,函数中的参数A为“2020.09.11 11:00:00”。 检查点属性 如下图所示,检查点属性“result”的目标值为日期时间戳函数,函数中的参数A

    来自:帮助中心

    查看更多 →

  • 案例:NOT IN转NOT EXISTS

    案例:NOT INNOT EXISTS NOT IN语句需要使用nestloop anti join来实现,而NOT EXISTS则可以通过hash anti join来实现。在join列不存在null值的情况下,not exists和not in等价。因此在确保没有null值时,可以通过将not

    来自:帮助中心

    查看更多 →

  • 查询呼叫信息

    离开此设备的原因描述,不支持查上一通的呼叫信息 3.17.14 vdnId int VDN ID 表6 原因码 原因码 含义 0 普通接入/转移 1 溢出 2 超时 3 无人上班 4 取消排队转移 5 座席久不应答 6 挂起恢复 7 连接保持 8 三方求助 9 取保持 10 三方通话

    来自:帮助中心

    查看更多 →

  • 案例:NOT IN转NOT EXISTS

    案例:NOT INNOT EXISTS NOT IN语句需要使用nestloop anti join来实现,而NOT EXISTS则可以通过hash anti join来实现。在join列不存在null值的情况下,not exists和not in等价。因此在确保没有null值时,可以通过将not

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了