GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    gpu现存 更多内容
  • 如何避免非GPU/NPU负载调度到GPU/NPU节点?

    如何避免非GPU/NPU负载调度到GPU/NPU节点? 问题现象 当集群中存在GPU/NPU节点和普通节点混合使用的场景时,普通工作负载也可以调度到GPU/NPU节点上,可能出现GPU/NPU资源未充分利用的情况。 问题原因 由于GPU/NPU节点同样提供CPU、内存资源,在一般

    来自:帮助中心

    查看更多 →

  • 应用GPU资源调度方式

    应用GPU资源调度方式 IEF支持多应用共享的方式使用GPU显卡。 IEF支持单个应用使用多个GPU显卡。 GPU资源调度基于GPU显存容量,调度采用GPU显存预分配方式而非实时GPU显存资源。 当应用需要使用的GPU显存资源小于单个GPU卡显存时,支持以共享方式进行资源调度,对

    来自:帮助中心

    查看更多 →

  • GPU实例故障自诊断

    GPU实例故障自诊断 GPU实例故障,如果已安装GPU监控的CES Agent,当GPU 服务器 出现异常时则会产生事件通知,可以及时发现问题避免造成用户损失。如果没有安装CES Agent,只能依赖用户对故障的监控情况,发现故障后及时联系技术支持处理。 GPU实例故障处理流程 GPU实例故障分类列表

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    CCE AI套件(NVIDIA GPU) 插件介绍 CCE AI套件(NVIDIA GPU)插件是支持在容器中使用GPU显卡的设备管理插件,集群中使用GPU节点时必须安装本插件。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic 是 object 插件基础配置参数。

    来自:帮助中心

    查看更多 →

  • gpu-device-plugin

    gpu-device-plugin 插件简介 gpu-device-plugin插件是支持在容器中使用GPU显卡的设备管理插件,集群中使用GPU节点时必须安装本插件。 约束与限制 下载的驱动必须是后缀为“.run”的文件。 仅支持Nvidia Tesla驱动,不支持GRID驱动。

    来自:帮助中心

    查看更多 →

  • GPU插件检查异常处理

    GPU插件检查异常处理 检查项内容 检查到本次升级涉及GPU插件,可能影响新建GPU节点时GPU驱动的安装。 解决方案 由于当前GPU插件的驱动配置由您自行配置,需要您验证两者的兼容性。建议您在测试环境验证安装升级目标版本的GPU插件,并配置当前GPU驱动后,测试创建节点是否正常使用。

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    /nvidia-smi 若能正常返回GPU信息,说明设备可用,插件安装成功。 GPU驱动支持列表 当前GPU驱动支持列表仅针对1.2.28及以上版本的GPU插件。 如果您需要安装最新版本的GPU驱动,请将您的GPU插件升级到最新版本。 表2 GPU驱动支持列表 GPU型号 支持集群类型 机型规格

    来自:帮助中心

    查看更多 →

  • GPU驱动异常怎么办?

    nvidia-smi: command not found 可能原因 云服务器 驱动异常、没有安装驱动或者驱动被卸载。 处理方法 如果未安装GPU驱动,请重新安装GPU驱动。 操作指导请参考:安装GPU驱动 如果已安装驱动,但是驱动被卸载。 执行history,查看是否执行过卸载操作。

    来自:帮助中心

    查看更多 →

  • 支持GPU监控的环境约束

    执行以下命令,查看安装结果。 lspci -d 10de: 图1 安装结果 GPU指标采集需要依赖以下驱动文件,请检查环境中对应的驱动文件是否存在。如果驱动未安装,可参见(推荐)GPU加速型实例自动安装GPU驱动(Linux)。 Linux驱动文件 nvmlUbuntuNvidiaLibraryPath

    来自:帮助中心

    查看更多 →

  • 使用Kubernetes默认GPU调度

    通过nvidia.com/gpu指定申请GPU的数量,支持申请设置为小于1的数量,比如nvidia.com/gpu: 0.5,这样可以多个Pod共享使用GPUGPU数量小于1时,不支持跨GPU分配,如0.5 GPU只会分配到一张卡上。 使用nvidia.com/gpu参数指定GPU数量时,re

    来自:帮助中心

    查看更多 →

  • 兼容Kubernetes默认GPU调度模式

    etes默认GPU调度模式(支持使用nvidia.com/gpu资源的工作负载)。 在工作负载中声明nvidia.com/gpu资源(即配置nvidia.com/gpu为小数,例如0.5)时将通过虚拟化GPU提供,实现GPU显存隔离,按照设定值的百分比为容器分配GPU显存(例如分配0

    来自:帮助中心

    查看更多 →

  • 手动更新GPU节点驱动版本

    置为GPU插件配置中指定的版本。 如果需要稳定升级GPU节点驱动,推荐使用通过节点池升级节点的GPU驱动版本。 前提条件 需要使用kubectl连接到集群,详情请参见通过kubectl连接集群。 操作步骤 如果您需要使用指定的NVIDIA驱动版本,可以在节点安装新版本GPU驱动,操作步骤如下:

    来自:帮助中心

    查看更多 →

  • T4 GPU设备显示异常

    T4 GPU设备显示异常 问题描述 使用NVIDIA Tesla T4 GPU云服务器,例如Pi2或G6规格,执行nvidia-smi命令查看GPU使用情况时,显示如下: No devices were found 原因分析 NVIDIA Tesla T4 GPU是NVIDIA的新版本,默认使用并开启GSP

    来自:帮助中心

    查看更多 →

  • 如何处理GPU掉卡问题

    a1),请继续按照处理方法处理;如果查找不到显卡或者显示状态为rev ff,请根据显卡故障诊断及处理方法进行故障诊断。规格对应显卡数量可以通过GPU加速型查询。 lspci | grep -i nvidia 处理方法 非CCE集群场景,建议尝试自行重装驱动,或升级驱动版本后执行nvidi

    来自:帮助中心

    查看更多 →

  • ERROR6203 GPU驱动未启动

    当前节点未启动GPU驱动。GPU驱动未启动。检查GPU当前状态:systemctl status nvidia-drivers-loader若nvidia驱动未启动,则启动nvidia驱动:systemctl start nvidia-drivers-loadersystemctl start nvidia-drivers-loader如

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)版本发布记录

    适配OS Ubuntu22.04 GPU驱动目录自动挂载优化 1.2.24 v1.19 v1.21 v1.23 v1.25 节点池支持配置GPU驱动版本 支持GPU指标采集 1.2.20 v1.19 v1.21 v1.23 v1.25 设置插件别名为gpu 1.2.17 v1.15 v1

    来自:帮助中心

    查看更多 →

  • ERROR6201 无GPU设备

    错误码说明 未检查到当前节点存在GPU设备 可能原因 GPU卡类型不匹配,当前IEF仅支持nvidia的GPU设备 GPU设备节点未检测到 处理措施 非nvidia的GPU卡。 安装IEF软件时,不使能GPU设备,或更换nvidia的GPU卡。 未检测到GPU设备。 尝试重启节点。 父主题:

    来自:帮助中心

    查看更多 →

  • GPU业务迁移至昇腾训练推理

    GPU业务迁移至昇腾训练推理 ModelArts昇腾迁移调优工具总览 基于LLM模型的GPU训练业务迁移至昇腾指导 GPU训练业务迁移至昇腾的通用指导 基于AIGC模型的GPU推理业务迁移至昇腾指导 GPU推理业务迁移至昇腾的通用指导 基于advisor的昇腾训练性能自助调优指导

    来自:帮助中心

    查看更多 →

  • GPU插件关键参数检查异常处理

    GPU插件关键参数检查异常处理 检查项内容 检查CCE GPU插件中部分配置是否被侵入式修改,被侵入式修改的插件可能导致升级失败。 解决方案 使用kubectl连接集群。 执行以下命令获取插件实例详情。 kubectl get ds nvidia-driver-installer

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard上运行GPU训练作业的场景介绍

    OBS桶(存放代码)”,采用分布式训练。 当使用SFS+OBS的存储方案可以实现存加速,该方案的端到端实践案例请参见面向AI场景使用OBS+SFS Turbo的存储加速实践。 表1 不同场景所需服务及购买推荐 场景 OBS SFS SWR DEW ModelArts VPC E CS

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了