弹性云服务器 ECS

 

弹性云服务器(Elastic Cloud Server)是一种可随时自助获取、可弹性伸缩的云服务器,帮助用户打造可靠、安全、灵活、高效的应用环境,确保服务持久稳定运行,提升运维效率

 
 

    量化交易用云服务器 更多内容
  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:per-group Step1 模型量化 可以在Huggingfac

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel,W8A16

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化

    使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel,W8A16

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 使用GPTQ量化

    使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ

    来自:帮助中心

    查看更多 →

  • 轻量化模型卡片

    。 单击“保存”。 使用轻量化模型卡片 已添加“轻量化模型”卡片到角色桌面,并且已上传文件进行轻量化转换。如果您还没有进行轻量化转换,卡片内容为空。 您可以参见轻量化模型转换API,调用相应的API上传待轻量化转换的文件,查询轻量化转换的任务和下载轻量化文件。 在卡片左侧的列表中

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.911)

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考步骤六

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.906)

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step6

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909)

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)

    来自:帮助中心

    查看更多 →

  • 本地开发工具说明

    本地开发工具说明 本地开发工具包含了微服务引擎2.x的本地轻量化版本,提供用于本地开发的轻量服务中心、配置中心,和简单易用的界面。 使用说明请参考本地开发工具压缩包中的README.md文件。 表1 本地引擎资源配额限制 功能 资源 最大配额 微服务管理 微服务版本数量(个) 10

    来自:帮助中心

    查看更多 →

  • 本地开发工具说明

    本地开发工具说明 本地开发工具包含了ServiceComb引擎2.x的本地轻量化版本,提供用于本地开发的轻量服务中心、配置中心,和简单易用的界面。 使用说明请参考本地开发工具压缩包中的README.md文件。 表1 本地引擎资源配额限制 功能 资源 最大配额 微服务管理 微服务版本数量(个)

    来自:帮助中心

    查看更多 →

  • 向量化执行引擎

    量化执行引擎 GS_232010001 错误码: [SonicHashJoin]: The memory of the current statement is not controlled. 解决方案:请设置hashjoin_spill_strategy为0-2。 level:

    来自:帮助中心

    查看更多 →

  • 查询轻量化任务状态

    查询轻量化任务状态 功能介绍 查询轻量化任务状态 图纸上传完成后,即可调用该接口获取图纸轻量化转换状态,该接口可能需要调用多次,直到返回的数据轻量化状态为SUCCESS或FAILED,即代表轻量化转换结束。 如果轻量化状态为SUCCESS,则代表图纸轻量化转换成功,此时可通过li

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了