GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    gpu云服务器什么 更多内容
  • GPU加速云服务器出现NVIDIA内核崩溃,如何解决?

    GPU加速云服务器 出现NVIDIA内核崩溃,如何解决? 问题描述 GPU加速 云服务器 在运行过程中发生crash,重启 服务器 后检查日志,发现没有打印NVIDIA驱动堆栈日志。 图1 堆栈日志信息 可能原因 云服务器在运行过程中遇到NVIDIA官方驱动bug,导致云服务器内核崩溃。

    来自:帮助中心

    查看更多 →

  • G系列弹性云服务器GPU驱动故障

    G系列 弹性云服务器 GPU驱动故障 问题描述 在Windows系统的G系列弹性云服务器中,无法打开NVIDIA 控制面板,GPU驱动无法使用或GPU驱动显示异常。 可能原因 GPU驱动状态异常。 处理方法 打开Windows设备管理器,在显示适配器中查看GPU驱动状态。 GPU驱动显

    来自:帮助中心

    查看更多 →

  • 什么是云耀云服务器?

    准。 云耀云服务器与弹性云服务器的主要区别: 云耀云服务器:云耀云服务器是可以快速搭建简单应用的新一代云服务器,按已搭配的套餐售卖,适用于低负载应用场景,可以更加便捷、更加高效的部署、配置和管理应用。 高负载应用场景推荐使用弹性云服务器E CS ,性能更稳定。 弹性云服务器:弹性云服

    来自:帮助中心

    查看更多 →

  • GPU设备显示异常

    是,该驱动版本与镜像可能存在兼容性问题,建议更换驱动版本,操作指导,请参考安装GPU驱动。 否,请执行下一步。 请尝试重启云服务器,再执行nvidia-smi查看GPU使用情况,确认是否正常。 如果问题依然存在,请联系客服。 父主题: GPU驱动故障

    来自:帮助中心

    查看更多 →

  • 监控GPU资源指标

    GPUGPU时钟频率 cce_gpu_memory_clock GPUGPU显存频率 cce_gpu_graphics_clock GPUGPU图形处理器频率 cce_gpu_video_clock GPUGPU视频处理器频率 物理状态数据 cce_gpu_temperature

    来自:帮助中心

    查看更多 →

  • GPU加速型

    RID驱动。 GPU弹性云服务器因通用算力和异构算力差异大,仅支持变更规格至同类型规格内的细分规格。 GPU弹性云服务器不支持热迁移。 计算加速型P2vs 概述 P2vs型弹性云服务器采用NVIDIA Tesla V100 GPU (32G显存),在提供云服务器灵活性的同时,

    来自:帮助中心

    查看更多 →

  • GPU虚拟化

    GPU虚拟化 GPU虚拟化概述 准备GPU虚拟化资源 使用GPU虚拟化 兼容Kubernetes默认GPU调度模式 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • 安装GPU指标集成插件

    暂不支持CCE纳管后的GPU加速型实例。 前提条件 已安装GPU驱动,未安装lspci工具的云服务器影响GPU掉卡事件的上报。 如果您的弹性云服务器未安装GPU驱动,请参见GPU驱动概述安装GPU驱动。 安装GPU驱动需使用默认路径。 GPU驱动安装完后,需重启GPU加速型实例,否则可能

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Linux)

    (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Linux实例上通过脚本自动安装GPU驱动。 使用须知 本操作仅支持Linux操作系统。

    来自:帮助中心

    查看更多 →

  • GPU驱动不可用

    方法一:重新启动,选择安装GPU驱动时的内核版本,即可使用GPU驱动。 在云服务器操作列下单击“远程登录 > 立即登录”。 单击远程登录操作面板上方的“发送CtrlAltDel”按钮,重启虚拟机。 然后快速刷新页面,按上下键,阻止系统继续启动,选择安装GPU驱动时的内核版本进入系统

    来自:帮助中心

    查看更多 →

  • 为什么创建云服务器失败?

    什么创建云服务器失败? 在专属主机资源上创建云服务器失败,可能由以下原因造成: 您所选择的云服务器规格不在您已有的专属主机支持范围内。 各类型专属主机支持的云服务器规格请参见概述。 您的专属主机资源不足,无法创建您所选择的云服务器规格。 您可以查看专属主机的剩余vCPU和内存数

    来自:帮助中心

    查看更多 →

  • 为什么不能购买云服务器?

    什么不能购买云服务器? 不能购买云服务器的原因可能有以下几种情况: 实名认证:若华为云账号未实名认证,则无法购买和使用华为云的产品和服务。实名认证操作请参见实名认证。 账号因存在异常(如账号被冻结)被限制,无法正常购买和使用华为云的产品和服务。可提交工单联系客服处理。 资源配额

    来自:帮助中心

    查看更多 →

  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • GPU节点驱动版本

    GPU节点驱动版本 选择GPU节点驱动版本 CCE推荐的GPU驱动版本列表 手动更新GPU节点驱动版本 通过节点池升级节点的GPU驱动版本 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • 使用GPU虚拟化

    init容器不支持使用GPU虚拟化资源。 GPU虚拟化支持显存隔离、显存与算力隔离两种隔离模式。单个GPU卡仅支持调度同一种隔离模式的工作负载。 v1.27及以下的集群中,使用GPU虚拟化后,不支持使用Autoscaler插件自动扩缩容GPU虚拟化节点。 XGPU服务的隔离功能不支持以UVM的方式申请显存,即调用CUDA

    来自:帮助中心

    查看更多 →

  • GPU实例故障处理流程

    GPU实例故障处理流程 GPU实例故障处理流程如图1所示,对应的操作方法如下: CES监控事件通知:配置GPU的CES监控后会产生故障事件通知。 故障信息收集:可使用GPU故障信息收集脚本一键收集,也可参考故障信息收集执行命令行收集。 GPU实例故障分类列表:根据错误信息在故障分类列表中识别故障类型。

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Windows)

    (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Windows实例上通过脚本自动安装GPU驱动。 使用须知 如果GPU加速型实例已安装G

    来自:帮助中心

    查看更多 →

  • Ubuntu系列弹性云服务器如何安装图形化界面?

    执行reboot命令,重启服务器。 (可选)GPU加速型弹性云服务器结果验证 对于GPU加速型弹性云服务器,在安装完图形化界面后,可通过如下操作验证驱动是否正常工作。 登录管理控制台。 为弹性云服务器配置安全组。 单击弹性云服务器名称,查看弹性云服务器详情,在弹性云服务器详情页面,选择“安全组”。

    来自:帮助中心

    查看更多 →

  • 什么是弹性云服务器?

    什么弹性云服务器弹性云服务器(Elastic Cloud Server,ECS)是由CPU、内存、操作系统、云硬盘组成的基础的计算组件。弹性云服务器创建成功后,您就可以像使用自己的本地PC或物理服务器一样,在云上使用弹性云服务器弹性云服务器的开通是自助完成的,您只需要指

    来自:帮助中心

    查看更多 →

  • 云服务器处于异常状态

    第三方插件未运行 重启云服务器 音频设备未运行 设置音频设备 初始化会话失败 重启云服务器 自动化脚本执行失败 重启云服务器 云服务器异常 联系客服,寻求技术支持 会话异常 重启会话,若未解决再重启云服务器 初始化会话失败 重启云服务器 附 设置音频设备 远程登录GPU云服务器。 打开本地

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了