韩信点兵算法 更多内容
  • k跳算法(k

    k跳算法(k_hop)(1.0.0) 表1 parameters参数说明 参数 是否必选 类型 说明 k 是 Integer 跳数,取值范围[1,100]。 num_thread 否 Integer 并发线程数。范围为[1,40],小于1会自动置为1,大于40则自动置为40。默认值为4。

    来自:帮助中心

    查看更多 →

  • Louvain算法(1.0.0)

    Louvain算法(1.0.0) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 convergence 否 收敛精度。 Double 0~1,不包括0和1。 0.00001 max_iterations 否 最大迭代次数。 Integer 1~2000。

    来自:帮助中心

    查看更多 →

  • k跳算法(k

    k跳算法(k_hop) 功能介绍 根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project

    来自:帮助中心

    查看更多 →

  • pagerank算法

    pagerank算法 功能介绍 根据输入参数,执行PageRank算法。 PageRank算法又称网页排名算法,是一种由搜索引擎根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。

    来自:帮助中心

    查看更多 →

  • HyG算法结果转存

    HyG算法结果转存 功能介绍 用于将算法(jobId)的执行结果转存到OBS,供用户查看全量结果。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/jobs/{job_id}/export-result 表1 路径参数 参数 是否必选

    来自:帮助中心

    查看更多 →

  • 聚合算法优化

    聚合算法优化 操作场景 在Spark SQL中支持基于行的哈希聚合算法,即使用快速聚合hashmap作为缓存,以提高聚合性能。hashmap替代了之前的ColumnarBatch支持,从而避免拥有聚合表的宽模式(大量key字段或value字段)时产生的性能问题。 操作步骤 要启动

    来自:帮助中心

    查看更多 →

  • 边缘算法和云上算法的区别

    边缘算法表示算法模型下发到边缘节点的客户设备中,在客户设备中执行算法分析任务,视频流数据不需要提供到华为云上。云上算法表示视频流数据需要上传到华为云,在华为云上进行算法分析。

    来自:帮助中心

    查看更多 →

  • MOD_HASH算法

    成路由计算(大小写敏感)。 例如:MOD_HASH('8')等价于8%D(D是分库数目/分表数)。 算法计算方式 方式一:拆分键是整型 表1 拆分键是整型时的计算方式 条件 算法 举例 分库拆分键 ≠ 分表拆分键 分库路由结果 = 分库拆分键值 % 分库数 分表路由结果 = 分表拆分键值

    来自:帮助中心

    查看更多 →

  • 查看加密算法

    查看加密算法 初始化密钥后,系统会根据密钥生成对应的加密算法,用户可以在算法查看页面查看系统支持的加密算法。 前提条件 确保已初始化密钥,具体初始化密钥操作,请参见初始化密钥章节。 操作步骤 使用系统管理员sysadmin账号登录实例Web控制台。 在左侧导航栏中,选择“数据加密

    来自:帮助中心

    查看更多 →

  • 使用算法分析图

    使用算法分析图 服务为您提供了丰富的基础图算法、图分析算法和图指标算法,您可以使用图算法做关系分析等。 操作步骤 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 在算法分析区,你可以选择算法,并设置参数。 图引擎服务支持的算法算法一览表所示,详细算法介绍请参见算法参考。

    来自:帮助中心

    查看更多 →

  • PageRank算法

    PageRank算法 概述 PageRank算法又称网页排名算法,是一种由搜索引擎根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个Pag

    来自:帮助中心

    查看更多 →

  • k核算法(kcore)

    k核算法(kcore) 功能介绍 根据输入参数,执行K核算法。 K核算法是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm

    来自:帮助中心

    查看更多 →

  • 算法API参数参考

    算法API参数参考 算法公共参数 最短路径(shortest_path) 点集最短路(shortest_path_of_vertex_sets) 点集共同邻居(common_neighbors_of_vertex_sets) 父主题: 原生算法API

    来自:帮助中心

    查看更多 →

  • 执行DSL算法

    执行DSL算法 功能介绍 提供灵活的DSL帮助用户低成本设计并运行算法。DSL算法详细介绍请参考DSL语法说明。 DSL算法执行结束后,用户需使用HyG算法结果转存API将DSL执行结果转存到OBS上。转存之后,您可以通过stdout等文件查看算法结果,由于HyG图是分布式的,结果文件可能有多个,对应不同分区的结果。

    来自:帮助中心

    查看更多 →

  • 算法API参数参考

    算法API参数参考 算法公共参数 pagerank算法(1.0.0) personalrank算法(1.0.0) k核算法(kcore)(1.0.0) k跳算法(k_hop)(1.0.0) 共同邻居(common_neighbors)(1.0.0) 点集共同邻居(common_n

    来自:帮助中心

    查看更多 →

  • 算法购买和安装(离线)

    算法购买和安装(离线) 购买算法 申请License 安装算法并加载License 父主题: 适用于SDC算法

    来自:帮助中心

    查看更多 →

  • 准备IVS3800算法

    准备IVS3800算法 IVS3800支持算法插件、算法容器API和算法虚机API三种算法包,本节介绍三种算法包的命名规范。 算法插件命名规范 插件包命名规范:CPlugin_服务名称_厂家_地域标识_硬件形态_Version.zip 表1 插件包参数说明 参数 说明 服务名称 使用解析算法插件plugin_info

    来自:帮助中心

    查看更多 →

  • 准备IVS1800算法

    每一次发布Update版本,发布序列号增加1。 举例 1 0 0 32/64算法标识符:64位填写为1,32位填写为2。当前仅支持64位算法,因此需要填写为1。 算法文件命名规范(基于昇腾310) 命名规范:服务商名称_目标物体_A-版本号-32/64位算法标识符.tar.gz 举例:如fws_helmet_A-V1

    来自:帮助中心

    查看更多 →

  • 准备ITS800算法

    准备ITS800算法 算法文件命名规范(基于昇腾310) 命名规范:服务商名称_目标物体_A-版本号-32/64位算法标识符.tar.gz 举例:如fws_helmet_A-V1.0.0-1.tar.gz 服务商名称:建议使用服务商名称简写。 目标物体:建议使用目标物体的英文单词

    来自:帮助中心

    查看更多 →

  • 拆分算法使用说明

    拆分算法使用说明 MOD_HASH算法 MOD_HASH_CI算法 RIGHT_SHIFT算法 MM按月份哈希 DD按日期哈希 WEEK按星期哈希 MMDD按月日哈希 YYYYMM按年月哈希 YYYYDD按年日哈希 YYYYWEEK按年周哈希 HASH算法 Range算法 父主题:

    来自:帮助中心

    查看更多 →

  • 预置算法运行故障

    预置算法运行故障 日志提示“label_map.pbtxt cannot be found” 日志提示“root: XXX valid number is 0” 日志提示“ValueError: label_map not match” 日志提示“Please set the train_url

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了