自适应优化算法 更多内容
  • 算法优化

    算法优化 PERF05-02 通用算法优化 父主题: PERF05 性能优化

    来自:帮助中心

    查看更多 →

  • 聚合算法优化

    要启动聚合算法优化,在Spark客户端的“spark-defaults.conf”配置文件中进行设置。 表1 参数介绍 参数 描述 默认值 spark.sql.codegen.aggregate.map.twolevel.enabled 是否开启聚合算法优化: true:开启 false:不开启

    来自:帮助中心

    查看更多 →

  • 聚合算法优化

    要启动聚合算法优化,在Spark客户端的“spark-defaults.conf”配置文件中进行设置。 表1 参数介绍 参数 描述 默认值 spark.sql.codegen.aggregate.map.twolevel.enabled 是否开启聚合算法优化: true:开启 false:不开启

    来自:帮助中心

    查看更多 →

  • PERF05-02 通用算法优化

    PERF05-02 通用算法优化 风险等级 中 关键策略 算法优化是提高程序性能的关键,可以通过改进算法的设计和实现方式来提高其效率和性能。以下是一些最佳实践: 使用正确的数据结构:选择合适的数据结构可以大辐提高算法的效率。例如,使用哈希表可以快速查找元素,使用数组可以快速访问元素。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    的均匀分布(高斯或者随机分布)。其中 nin 是该神经元的输入数目。 优化器类型 grad:梯度下降算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 adam:自适应矩估计算法 结合AdaGrad和 RMS Prop两种优化算法的优点,对梯度的一阶矩估计(First Moment

    来自:帮助中心

    查看更多 →

  • 多终端自适应版

    1G 1G 1G 搜索引擎优化 搜索引擎优化(SEO)的目标是提高网站在搜索引擎中的自然排名,从而增加有效访问量,让网站在行业内占据领先地位,获得品牌收益。如表4所示,主要介绍多终端自适应版站点的搜索引擎优化相关特性。 表4 搜索引擎优化特性 搜索引擎优化特性 入门版 标准版 推广版

    来自:帮助中心

    查看更多 →

  • 排序策略

    的均匀分布(高斯或者随机分布)。其中 nin 是该神经元的输入数目。 优化器类型 grad:梯度下降算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 adam:自适应矩估计算法 结合AdaGrad和RMSProp两种优化算法的优点,对梯度的一阶矩估计(First Moment

    来自:帮助中心

    查看更多 →

  • 算法

    KcoreSample K核算法 KhopSample K跳算法 ShortestPathSample 最短路径算法 AllShortestPathsSample 全最短路径算法 FilteredShortestPathSample 带一般过滤条件最短路径 SsspSample 单源最短路径算法 Sh

    来自:帮助中心

    查看更多 →

  • 使用Plan Hint进行调优

    连接时内表物化的Hint 指定agg算法的Hint 查询改写的Hint Outline Hint 指定Any子链接提升的Hint 指定扫描并行度的Hint 指定是否使用Semi Join的Hint 指定Stream Hashagg优化方式的Hint 指定是否使用minmax优化的hint 指定是否使用Partition-wise

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 自适应计划选择的Hint

    自适应计划选择的Hint 功能描述 对于以PBE方式执行的查询语句和DML语句,用户可以通过在查询中加choose_adaptive_gplan hint触发自适应计划选择。 语法格式 针对查询开启自适应计划选择: 1 choose_adaptive_gplan 对于非PBE方

    来自:帮助中心

    查看更多 →

  • 开启HetuEngine自适应查询执行

    维成本。为了解决上述问题,HetuEngine提供了自适应查询执行的功能,该功能会自适应地调度执行查询。 本章节介绍如何开启自适应查询执行功能。 开启HetuEngine自适应查询执行步骤 使用HetuEngine管理员用户登录Manager,选择“集群 > 服务 > HetuE

    来自:帮助中心

    查看更多 →

  • 自动模型优化介绍

    s支持的超参搜索功能,在无需算法工程师介入的情况下,即可自动进行超参的调优,在速度和精度上超过人工调优。 ModelArts支持以下三种超参搜索算法: 贝叶斯优化(SMAC) TPE算法 模拟退火算法(Anneal) 贝叶斯优化(SMAC) 贝叶斯优化假设超参和目标函数存在一个函

    来自:帮助中心

    查看更多 →

  • 使用Plan Hint进行调优

    子链接块名的hint Hint的错误、冲突及告警 优化器GUC参数的Hint Custom Plan和Generic Plan选择的Hint 指定子查询不展开的Hint 指定不使用全局计划缓存的Hint 同层参数化路径的Hint 设置慢SQL管控规则的Hint 自适应计划选择的Hint 为子计划结果进行物化的Hint

    来自:帮助中心

    查看更多 →

  • 自适应计划选择的Hint

    自适应计划选择的Hint 功能描述 对于以PBE方式执行的查询语句和DML语句,用户可以通过在查询中加choose_adaptive_gplan hint触发自适应计划选择。 语法格式 针对查询开启自适应计划选择: 1 choose_adaptive_gplan 对于非PBE方

    来自:帮助中心

    查看更多 →

  • 基因查询优化器

    基因查询优化器 介绍基因查询优化器相关的参数。基因查询优化器(GEQO)是一种启发式的查询规划算法。这个算法减少了对复杂查询规划的时间,而且生成规划的开销有时也小于正常的详尽的查询算法。 geqo 参数说明:控制基因查询优化的使用。 参数类型:USERSET 取值范围:布尔型 on表示使用。

    来自:帮助中心

    查看更多 →

  • 基因查询优化器

    基因查询优化器 介绍基因查询优化器相关的参数。基因查询优化器(GEQO)是一种启发式的查询规划算法。这个算法减少了对复杂查询规划的时间,而且生成规划的开销有时也小于正常的详尽的查询算法。 geqo 参数说明:控制基因查询优化的使用。 参数类型:USERSET 取值范围:布尔型 on表示使用。

    来自:帮助中心

    查看更多 →

  • 优化器

    优化器 查询重写 路径生成 计划生成 Analyze utile接口

    来自:帮助中心

    查看更多 →

  • 容量优化

    容量优化 在客户的运维工作中,为了保证业务可以持续运转不间断,需要提前识别高负载风险实例并提前做出应对措施。容量优化可以根据用户输入的安全阈值帮助客户快速识别风险实例并给出优化建议。 使用场景 当用户期望能预测资源的负载情况,识别出高负载资源时,可以使用该功能进行辅助预测。 限制与约束

    来自:帮助中心

    查看更多 →

  • 成本优化

    成本优化 在您通过成本中心了解和分析您的成本情况后,您可以确定成本偏高的原因,然后采取针对性的优化措施。 资源优化 您可以通过 云监控服务 监控资源的使用情况,识别空闲资源,寻找节约成本的机会。也可以根据成本分析阶段的分析结果识别成本偏高的资源,然后采取针对性的优化措施。 通过CES

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了