无服务器图片生成缩略图

无服务器图片生成缩略图

    识别图片里文字 更多内容
  • 方案概述

    IVS业务业务逻辑,当收到OBS上传人脸信息通知后,自动从OBS桶内获取识别出的姓名、身份证号、人脸信息并调用 人证核身 服务 IVS进行人证核身,并将结果转存到OBS桶文字识别 OCR和人证核身服务 IVS:提供证件识别和人证核身服务,识别用户上传的证件图片以及人脸图片核对,并将结果以JSON格式返回。 方案优势

    来自:帮助中心

    查看更多 →

  • 上传模板图片

    图片最大边不大于4096px,最小边不小于100px,且大小不超过4M。 训练分类器的数据集要求将图片放在一个目录,并压缩成zip文件,文件大小不应大于10M。 进入应用开发页面 登录“ ModelArts Pro >文字识别套件”控制台。 默认进入“应用开发>工作台”页面。 在“我的应用”页签下,选择应用并单击“操作”列的“查看”。

    来自:帮助中心

    查看更多 →

  • 对接ModelArt识别图像和文字

    (可选)测试是否能可识别花卉图片。 在连接器详情页面,单击“测试”。 配置测试参数,单击“测试”。 选择类型:识别的主体可以是图片或者文本信息。本示例选择“图片文件”,并上传待识别图片图片URL:识别的主体是图片时,可选择“图片URL”并设置图片的URL。 图片文件:识别的主体为图片

    来自:帮助中心

    查看更多 →

  • 方案概述

    函数工作流 :用于实现调用文字识别服务的业务逻辑,当OBS桶收到上传的发票文件后,会自动通知函数调用文字识别服务,并将结果存放到指定的OBS桶文字识别服务:提供发票识别与验真服务,识别用户上传的发票内容以及对接国税局系统进行真伪验证。 方案优势 场景丰富 支持发票识别和发票验真功能。

    来自:帮助中心

    查看更多 →

  • API概览

    对提取、文字识别、以及表格识别等任务,实现进阶高效的自动化结构化返回。 通用类 通用表格识别 识别表格图片上的文字内容,并返回识别的结构化结果。 通用文字识别 识别图片上的文字内容,并返回识别文字和坐标。 网络图片识别 识别网络图片中的文字内容,并以JSON格式返回识别的结构化结果。支持横向、竖向、艺术字识别。

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    在图片模板中框选识别区,确定模板图片中需要识别文字位置。 框选识别区 评估应用 通过上传与模板图片同一板式的测试图片,评估图片识别结果是否正确。 评估应用 部署服务 模板图片评估后,可以部署模板至文字识别开发套件中,开发属于自己的文字识别应用,此应用用于识别自己所上传的模板样式的图片。 部署服务 父主题: 通用单模板工作流

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    上传模板图片后,需要对模板图片进行预处理,去掉冗余部分,将图片旋转至水平,保证模型识别的准确性。 定义预处理 框选参照字段 在图片模板中框选参照字段,用于矫正图片的方向,进而在正确的方向上,识别图片中的结构化信息。 框选参照字段 框选识别区 在图片模板中框选识别区,确定模板图片中需要识别文字位置。

    来自:帮助中心

    查看更多 →

  • 通用类

    功能介绍 通用表格识别 提取表格内的文字和所在行列位置信息,适应不同格式的表格。同时也识别表格外部的文字区域。用于各种单据和报表的电子化,恢复结构化信息。 通用文字识别 提取图片内的文字及其对应位置信息,并能够根据文字图片中的位置进行结构化整理工作。 手写文字识别 识别文档中的手写文

    来自:帮助中心

    查看更多 →

  • 上传模板图片

    上传模板图片 在使用单模板工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪张图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传某一格式的发票图片作为模板,训练的文字识别模型就能识别并提取同格式发票上的关键字段。 前提条件 已授权ModelArts服务和 对象存储服务 (OBS)。

    来自:帮助中心

    查看更多 →

  • 方案概述

    创建用于存储发票识别与验真结果的对象存储服务 OBS桶,企业业务系统定时从该桶中获取结果并处理。 函数工作流 FunctionGraph:用于实现调用文字识别服务的业务逻辑,当OBS桶收到上传的发票文件后,会自动通知函数调用文字识别服务,并将结果存放到指定的OBS桶文字识别 OCR

    来自:帮助中心

    查看更多 →

  • 提取图片中的文字暗水印(文件地址版本)

    提取图片中的文字暗水印(文件地址版本) 功能介绍 对指定存储地址信息(目前支持OBS)的已嵌入文字暗水印的图片提取文字暗水印,支持的图片格式为:*.jpg, *.jpeg, *.jpe, *.png, *.bmp, *.dib, *.rle, *.tiff, *.tif, *.ppm

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    评估应用 通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多个模板情况下正确分类测试图片的模板,并且能正确识别测试图片中的识别文字。 评估应用 部署服务 模板图片评估后,可以部署模板至文字识别开发套件中,开发属于自己的文字识别应用,此应用用于识别自己所上传的多模板样式的图片。

    来自:帮助中心

    查看更多 →

  • 解读识别结果

    图片中的文字块数目、文字块排列顺序、具体文本内容、所在位置、置信度等信息。 result字段仅在API调用成功后返回。 words_block_count表示文字识别结果,本示例中,识别出2个文字块,分别代表图片中的2行文字。 words_block_list表示文字块列表,按照图片文字从上到下、从左到右排列。

    来自:帮助中心

    查看更多 →

  • 如何选购合适的API

    通用文字识别 :提取图片内的文字及其对应位置信息。 手写文字识别识别手写文字、印刷文字信息。 网络图片识别识别网络图片内的所有文字及其对应位置信息。 证件类 身份证识别、护照识别、银行卡识别 驾驶证识别、行驶证识别、道路运输证识别、车牌识别、VIN码识别 营业执照识别、名片识别 票据类 增值税发票识

    来自:帮助中心

    查看更多 →

  • 评估应用

    图片区域,上传本地的图片作为测试图片。 上传图片后,右侧会显示文字识别结果,包括“识别区”和对应的“识别结果”。 上传在线图片 单击“在线URL”,切换至“在线URL”页签。在“开始识别”左侧输出框中输入待测试的图片URL地址,或者拖拽测试图片至虚线框内上传图片区域,上传在线图片作为测试图片。

    来自:帮助中心

    查看更多 →

  • 框选识别区

    框选识别区 在文字识别过程中,需要确定图片识别文字位置,这就需要在图片模板中框选识别区。 识别区指图片中待识别文字位置。所有需要识别图片中都会包含此识别区的字段,且位置固定不变,因此模型可以通过识别区找到需要识别内容的位置。 前提条件 已在自定义OCR控制台选择“多模板分

    来自:帮助中心

    查看更多 →

  • 框选参照字段

    框选参照字段 在文字识别过程中,套件会检查所识别图片与模板图片是否为同一种模板,并将识别图片校正后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    详细指导 上传模板图片 在使用多模板工作流开发应用之前,需要上传模板图片,明确以哪些图片作为模板训练文字识别模型。 上传模板图片 定义预处理 上传模板图片后,需要对模板图片进行预处理,去掉冗余部分,将图片旋转至水平,保证模型识别的准确性。 定义预处理 框选参照字段 在图片模板中框选参照

    来自:帮助中心

    查看更多 →

  • 什么情况下可以使用自定义模板?

    业证上的文字信息。 自定义模板支持识别单模板应用或是多模板应用,单模板仅支持一种版式,多模板支持识别多种版式。 单模板的前提: 识别图片需与模板图片版式相同,具体而言,图片中要存在文字内容和位置均固定不变的文字(参照字段)。 识别文字内容不能偏离设定的识别区域,包括打印偏移、由上下文长度变化引起的偏移等。

    来自:帮助中心

    查看更多 →

  • 上传模板图片

    上传模板图片 在使用多模板分类工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪几种板式图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传两种不同格式的发票图片作为模板,训练的文字识别模型就能识别并提取这两种格式发票上的关键字段。 前提条件

    来自:帮助中心

    查看更多 →

  • 评估

    上传测试图片或者上传在线图片,评估模板。 图4 评估模板 本地上传图片 默认进入“本地上传”页签,单击“上传图片”,或者拖拽测试图片至虚线框内上传图片区域,上传本地的图片作为测试图片。 上传图片后,右侧会显示文字识别结果,包括“识别区”和对应的“识别结果”。 上传在线图片 单击“

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了