对象存储服务 OBS     

对象存储服务(Object Storage Service)是一款稳定、安全、高效、易用的云存储服务,具备标准Restful API接口,可存储任意数量和形式的非结构化数据。

 
 

    分布式存储原理 更多内容
  • GaussDB(for MySQL)备份原理

    MySQL)备份原理 云数据库 GaussDB (for MySQL)基于华为最新一代DFV存储,采用计算与存储分离架构,计算层用于给外部提供服务,管理日志信息,存储存储数据信息。存储层分为Common Log节点和Slice Store节点,Common Log节点存储日志信息,Slice

    来自:帮助中心

    查看更多 →

  • 异地双活原理介绍

    异地双活原理介绍 GeminiDB Cassandra提供了异地双活功能,通过异地实例间数据的双向同步和业务灵活调度能力,实现了业务恢复和故障恢复解耦,保障了故障场景下业务的连续性。 异地双活是一种多活容灾架构的解决方案,即部署在不同数据中心的GeminiDB Cassandra

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    APP认证工作原理 APP认证流程 构造规范请求。 将待发送的请求内容按照与APIC后台约定的规则组装,确保客户端签名、APIC后台认证时使用的请求内容一致。 使用规范请求和其他信息创建待签字符串。 使用AK/SK和待签字符串计算签名。 将生成的签名信息作为请求消息头添加到HTT

    来自:帮助中心

    查看更多 →

  • ClickHouse基本原理

    足生产环境的要求。 分布式管理:提供集群模式,能够自动管理多个数据库节点。 列式存储与数据压缩 ClickHouse是一款使用列式存储的数据库,数据按列进行组织,属于同一列的数据会被保存在一起,列与列之间也会由不同的文件分别保存。 在执行数据查询时,列式存储可以减少数据扫描范围和

    来自:帮助中心

    查看更多 →

  • 产品概述

    持有者或者验证者角色。 分布式身份服务调用原理 使用可信分布式身份TDIS之前,无需购买 区块链 和安装区块链服务,单击开通并申请免费套餐包后即可使用。用户通过TDIS服务提供的RESTful接口进行分布式身份和可验证凭证的管理。 图1 分布式身份服务调用原理 使用方式 根据持有者申

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    APP认证工作原理 构造规范请求。 将待发送的请求内容按照与API网关(即API管理)后台约定的规则组装,确保客户端签名、API网关后台认证时使用的请求内容一致。 使用规范请求和其他信息创建待签字符串。 使用AK/SK和待签字符串计算签名。 将生成的签名信息作为请求消息头添加到H

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 GaussDB(for MySQL)是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图

    来自:帮助中心

    查看更多 →

  • Spark基本原理

    从HDFS输入创建,或从与Hadoop兼容的其他存储系统中输入创建。 从父RDD转换得到新RDD。 从数据集合转换而来,通过编码实现。 RDD的存储: 用户可以选择不同的存储级别缓存RDD以便重用(RDD有11种存储级别)。 当前RDD默认是存储于内存,但当内存不足时,RDD会溢出到磁盘中。

    来自:帮助中心

    查看更多 →

  • Hue基本原理

    权限。 手动配置HDFS目录存储策略,配置动态存储策略等操作。 Hive: 编辑、执行SQL/HQL语句;保存、复制、编辑SQL/HQL模板;解释SQL/HQL语句;保存SQL/HQL语句并进行查询。 数据库展示,数据表展示。 支持多种Hadoop存储。 通过Metastore对数据库及表和视图进行增删改查等操作。

    来自:帮助中心

    查看更多 →

  • Storm基本原理

    关于Storm的架构和详细原理介绍,请参见:https://storm.apache.org/。 Storm原理 基本概念 表1 概念介绍 概念 说明 Tuple Storm核心数据结构,是消息传递的基本单元,不可变Key-Value对,这些Tuple会以一种分布式的方式进行创建和处理。

    来自:帮助中心

    查看更多 →

  • Flink基本原理

    tate Backend,State可以存储在内存上或RocksDB等上,并支持异步以及增量的Checkpoint机制。 精确一次语义:Flink的Checkpoint和故障恢复能力保证了任务在故障发生前后的应用状态一致性,为某些特定的存储支持了事务型输出的功能,即使在发生故障的情况下,也能够保证精确一次的输出。

    来自:帮助中心

    查看更多 →

  • YARN基本原理

    YARN基本原理 为了实现一个Hadoop集群的集群共享、可伸缩性和可靠性,并消除早期MapReduce框架中的JobTracker性能瓶颈,开源社区引入了统一的资源管理框架YARN。 YARN是将JobTracker的两个主要功能(资源管理和作业调度/监控)分离,主要方法是创建

    来自:帮助中心

    查看更多 →

  • 背景及原理(服务编排)

    背景及原理(服务编排) AstroZero的服务编排,支持对逻辑判断组件、数据处理组件,以及脚本、子服务编排、商业对象等进行可视化组合编排,实现丰富的业务功能。 了解服务编排 在传统的开发中程序员一般是基于代码进行开发,程序员需要学习内容较多,开发效率相对低一些,开发门槛也高。A

    来自:帮助中心

    查看更多 →

  • FederatedHPA工作原理

    展出的Pod调度到具有更多资源的集群,以解决单个集群的资源限制,提高故障发生时的恢复能力。 FederatedHPA工作原理 FederatedHPA的工作原理如图1,实现流程如下: HPA Controller通过API定期查询工作负载的指标数据。 karmada-apiser

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM 将根据源端的字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时的字段类型映射 CDM在 数据仓库 服务(Data Warehouse Service,简称DWS)中自动建表时,DWS的表与源表的字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩的控制器,HPA周期性检查Pod的度量数据,计算满足HPA资源所配置的目标数值所需的副本数量,进而调整目标资源(如Deployment)的replicas字段。

    来自:帮助中心

    查看更多 →

  • HBase基本原理

    HBase基本原理 数据存储使用HBase来承接,HBase是一个开源的、面向列(Column-Oriented)、适合存储海量非结构化数据或半结构化数据的、具备高可靠性、高性能、可灵活扩展伸缩的、支持实时数据读写的分布式存储系统。更多关于HBase的信息,请参见:https://hbase

    来自:帮助中心

    查看更多 →

  • Hive基本原理

    Hive基本原理 Hive是建立在Hadoop上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。Hive定义了简单的类SQL查询语言,称为HQL,它允许熟悉SQL的用户查询数据。

    来自:帮助中心

    查看更多 →

  • Kafka基本原理

    Kafka基本原理 Kafka是一个分布式的、分区的、多副本的消息发布-订阅系统,它提供了类似于JMS的特性,但在设计上完全不同,它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性,适用于离线和在线的消息消费,如常规的消息收集、网站活性跟踪、聚合统计系统运营数据(监控数据

    来自:帮助中心

    查看更多 →

  • HetuEngine基本原理

    HetuEngine基本原理 HetuEngine简介 HetuEngine是自研高性能交互式SQL分析及数据虚拟化引擎。与大数据生态无缝融合,实现海量数据秒级交互式查询;支持跨源跨域统一访问,使能 数据湖 内、湖间、湖仓一站式SQL融合分析。 HetuEngine结构 HetuEn

    来自:帮助中心

    查看更多 →

  • CarbonData基本原理

    以撤销特定的数据加载操作。 CarbonData文件格式是HDFS中的列式存储格式。该格式具有许多新型列存储文件的特性,例如,分割表,数据压缩等。CarbonData具有以下独有的特点: 伴随索引的数据存储:由于在查询中设置了过滤器,可以显著加快查询性能,减少I/O扫描次数和CP

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了