断点续传的原理 更多内容
  • HDFS基本原理

    HDFS基本原理 HDFS是Hadoop分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠分布式读写。HDFS针对使用场景是数据读写具有“一次写,多次读”特征,而数据“写”操作是顺序写,也就是在文件创建时写入或者在现有文件

    来自:帮助中心

    查看更多 →

  • MemArtsCC基本原理

    常需要等待数据而拖慢任务执行。因此,计算侧需要一个高速缓存层来消除计算集群和OBS之间数据访问鸿沟。为了解决这个问题,提出MemArts分布式客户端缓存,MemArts部署在计算侧VM中,通过智能预取OBS上数据来加速计算任务执行。 图1 MemArtsCC结构图 表1

    来自:帮助中心

    查看更多 →

  • Doris基本原理

    和被更新数据进行标记删除,同时将新数据写入新文件。在查询时,所有被标记删除数据都会在文件级别被过滤,读取出数据就都是最新数据,消除了读时合并中数据聚合过程,并且能够在很多情况下支持多种谓词下推。因此在许多场景都能带来比较大性能提升,尤其是在有聚合查询情况下。 Duplicate模型

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    API网关收到请求后,执行1~3,计算签名。 将3中生成签名与5中生成签名进行比较,如果签名匹配,则处理请求,否则将拒绝请求。 APP签名仅支持Body体12M及以下请求签名。 步骤1:构造规范请求 使用APP方式进行签名与认证,首先需要规范请求内容,然后再进行签名。客户端与API网关使用相同请求规范,可以

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    API网关收到请求后,执行1~3,计算签名。 将3中生成签名与5中生成签名进行比较,如果签名匹配,则处理请求,否则将拒绝请求。 APP签名仅支持Body体12M及以下请求签名。 步骤1:构造规范请求 使用APP方式进行签名与认证,首先需要规范请求内容,然后再进行签名。客户端与API网关使用相同请求规范,可以

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读节点读取redo日志进行缓存数据更新,对应redo日志lsn,称为visible lsn,表示只读节点能读取数据页最大lsn。对于主节点来说,每更新或者插入一条数据产生最新redo日志lsn为flush_to_disk_lsn,表示主节点能访问数据页最大lsn。只读延迟其实就是只读节点visible

    来自:帮助中心

    查看更多 →

  • 背景及原理(服务编排)

    stroZero服务编排功能,类似于编程中一段有流程、条件处理、判断逻辑程序。这段程序有输入参数和输出参数、可以独立成为一个对外调用方法。同时,在程序内部,也可以调用其他方法。 AstroZero中服务编排是将原来基于代码编程改变为用图形化,拖拉拽方式去编程。如图1所

    来自:帮助中心

    查看更多 →

  • Spark基本原理

    会给数据密集型工作流带来大量IO开销。而对于RDD来说,它只有一套受限制接口,仅支持粗粒度更新,例如map,join等等。通过这种方式,Spark只需要简单记录建立数据转换操作日志,而不是完整数据集,就能够提供容错性。这种数据转换链记录就是数据集溯源。由于并行

    来自:帮助中心

    查看更多 →

  • Hue基本原理

    过界面图形化方式查看ZooKeeper。 有关Hue详细信息,请参见:http://gethue.com/。 Hue结构 Hue是建立在Django Python(开放源代码Web应用框架)Web框架上Web应用程序,采用了MTV(模型M-模板T-视图V)软件设计模式。

    来自:帮助中心

    查看更多 →

  • Storm基本原理

    Storm核心数据结构,是消息传递基本单元,不可变Key-Value对,这些Tuple会以一种分布式方式进行创建和处理。 Stream Storm关键抽象,是一个无边界连续Tuple序列。 Topology 在Storm平台上运行一个实时应用程序,由各个组件(Component)组成一个DAG(Directed

    来自:帮助中心

    查看更多 →

  • Flink基本原理

    精确一次语义:FlinkCheckpoint和故障恢复能力保证了任务在故障发生前后应用状态一致性,为某些特定存储支持了事务型输出功能,即使在发生故障情况下,也能够保证精确一次输出。 丰富时间语义 时间是流处理应用重要组成部分,对于实时流处理应用来说,基于时间语义窗口聚合、检

    来自:帮助中心

    查看更多 →

  • YARN基本原理

    个队列,再选择队列上一个应用,并尝试在这个应用上分配资源。若因参数限制导致分配失败,将选择下一个应用。选择一个应用后,调度器会处理此应用资源申请。其优先级从高到低依次为:本地资源申请、同机架申请,任意机器申请。 图2 资源分配模型 YARN原理Hadoop Map

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读节点读取redo日志进行缓存数据更新,对应redo日志lsn,称为visible lsn,表示只读节点能读取数据页最大lsn。对于主节点来说,每更新或者插入一条数据产生最新redo日志lsn为flush_to_disk_lsn,表示主节点能访问数据页最大lsn。只读延迟其实就是只读节点visible

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM 将根据源端字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时字段类型映射 CDM在 数据仓库 服务(Data Warehouse Service,简称DWS)中自动建表时,DWS表与源表字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • FederatedHPA工作原理

    当前Pod数与期望Pod数计算方法如下: 当前Pod数 = 所有集群中状态为ReadyPod数量 在计算期望Pod数时,HPA Controller会选择最近5分钟内计算所得Pod数最大值,以避免之前自动扩缩操作还未完成,就直接执行新扩缩情况。 期望Pod数 = 当前Pod数

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩控制器,HPA周期性检查Pod度量数据,计算满足HPA资源所配置目标数值所需副本数量,进而调整目标资源(如Deployment)replicas字段。

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM将根据源端字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时字段类型映射 CDM在数据仓库服务(Data Warehouse Service,简称DWS)中自动建表时,DWS表与源表字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    创建AHPA策略 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩控制器,HPA周期性检查Pod度量数据,计算满足HPA资源所配置目标数值所需副本数量,进而调整目标资源(如Deployment)replicas字段。 想

    来自:帮助中心

    查看更多 →

  • HBase基本原理

    定义Column数量和类型。HBase中表列非常稀疏,不同行个数和类型都可以不同。此外,每个CF都有独立生存周期(TTL)。可以只对行上锁,对行操作始终是原始。 Column 与传统数据库类似,HBase表中也有列概念,列用于表示相同类型数据。 RegionServer数据存储

    来自:帮助中心

    查看更多 →

  • Hive基本原理

    L、Derby。Hive中元数据包括表名字,表列和分区及其属性,表属性(是否为外部表等),表数据所在目录等。 Hive结构 Hive为单实例服务进程,提供服务原理是将HQL编译解析成相应MapReduce或者HDFS任务,图1为Hive结构概图。 图1 Hive结构

    来自:帮助中心

    查看更多 →

  • Kafka基本原理

    Kafka基本原理 Kafka是一个分布式、分区、多副本消息发布-订阅系统,它提供了类似于JMS特性,但在设计上完全不同,它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性,适用于离线和在线消息消费,如常规消息收集、网站活性跟踪、聚合统计系统运营数据(监控数据

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了