无服务器图片生成缩略图

无服务器图片生成缩略图

    怎么根据图片识别出来文字 更多内容
  • 文字识别套件使用简介

    识别服务,实现多种版式图像的文字信息结构化提取。 文字识别套件提供预置工作流供您选择,全流程可视化完成AI应用开发以及持续迭代。 选择预置工作流 单模板工作流 通过工作流指引构建文字识别模板,识别单个板式图片中的文字,快速实现文档、票证等场景的文字识别。详情请见使用单模板工作流开发应用。

    来自:帮助中心

    查看更多 →

  • 组件版本为什么没有被识别出来或识别错误?

    组件版本为什么没有被识别出来识别错误? 成分分析扫描无法识别组件版本常见原因有: 成分分析特征库不支持该开源软件版本。 用户引用的开源软件修改过源码,或使用时部分引用该软件功能,导致实际编译/发布文件中相关软件特征未达到工具识别阈值,造成开源软件无法识别或版本识别异常。 用户使用的

    来自:帮助中心

    查看更多 →

  • 提取图片中的文字暗水印

    提取图片中的文字暗水印 功能介绍 对已嵌入文字暗水印的图片进行水印提取,用户以formData的格式传入待提取水印的图片,DSC服务以JSON的格式返回从图片里提取的出的文字暗水印。目前支持的图片格式为:*.jpg, *.jpeg, *.jpe, *.png, *.bmp, *.dib

    来自:帮助中心

    查看更多 →

  • 组件版本为什么没有被识别出来或识别错误?

    组件版本为什么没有被识别出来识别错误? 成分分析扫描无法识别组件版本常见原因有: 成分分析特征库不支持该开源软件版本。 用户引用的开源软件修改过源码,或使用时部分引用该软件功能,导致实际编译/发布文件中相关软件特征未达到工具识别阈值,造成开源软件无法识别或版本识别异常。 用户使用的

    来自:帮助中心

    查看更多 →

  • 对接ModelArt识别图像和文字

    (可选)测试是否能可识别花卉图片。 在连接器详情页面,单击“测试”。 配置测试参数,单击“测试”。 选择类型:识别的主体可以是图片或者文本信息。本示例选择“图片文件”,并上传待识别图片图片URL:识别的主体是图片时,可选择“图片URL”并设置图片的URL。 图片文件:识别的主体为图片

    来自:帮助中心

    查看更多 →

  • 票据类

    票据类 功能介绍 增值税发票识别 通过对增值税发票图片预处理、表格提取、文字提取、文字识别、结构化信息输出等一系列技术化手段,快速将增值税发票上的文字信息识别出来,用于后续的进一步处理,节省大量的人工录入成本。 机动车销售发票识别 自动识别机动车销售发票图片内的文本内容,并返回结构化

    来自:帮助中心

    查看更多 →

  • 通用类

    功能介绍 通用表格识别 提取表格内的文字和所在行列位置信息,适应不同格式的表格。同时也识别表格外部的文字区域。用于各种单据和报表的电子化,恢复结构化信息。 通用文字识别 提取图片内的文字及其对应位置信息,并能够根据文字图片中的位置进行结构化整理工作。 手写文字识别 识别文档中的手写文

    来自:帮助中心

    查看更多 →

  • 自定义OCR介绍

    自定义OCR基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字识别服务,实现多种版式图像的文字信息结构化提取。 工作流 自定义OCR当前提供了单模板工作流和多模板工作流,自主构建文字识别模板,识别模板图片中的文字,提供高精度的文字识别模型,保证结构化信息提取精度。

    来自:帮助中心

    查看更多 →

  • API概览

    结果。 手写文字识别 识别手写文字图片中的文字内容。 证件类 身份证识别 识别身份证图片中正面与反面的文字内容,并返回识别文字和坐标。 户口本识别 识别户口本中的文字信息,并返回识别的结构化结果。 行驶证识别 识别行驶证图片中主页与副页的文字内容,并返回识别文字和坐标。 驾驶证识别

    来自:帮助中心

    查看更多 →

  • 行业套件介绍

    行业套件介绍 文字识别套件基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字识别服务,实现多种版式图像的文字信息结构化提取。 文字识别套件的介绍请参见产品介绍。 预置工作流 文字识别套件当前提供了单模板工作流和多模板工作流,自主构建文字识别模板,识别模板图片

    来自:帮助中心

    查看更多 →

  • 评估应用

    图片区域,上传本地的图片作为测试图片。 上传图片后,右侧会显示文字识别结果,包括“识别区”和对应的“识别结果”。 上传在线图片 单击“在线URL”,切换至“在线URL”页签。在“开始识别”左侧输出框中输入待测试的图片URL地址,或者拖拽测试图片至虚线框内上传图片区域,上传在线图片作为测试图片。

    来自:帮助中心

    查看更多 →

  • 如何提高识别速度

    如何提高识别速度 识别速度与图片大小有关,图片大小会影响网络传输、图片base64解码等处理过程的时间,因此建议在图片文字清晰的情况下,适当压缩图片的大小,以便降低图片识别时间。推荐上传JPG图片格式。 根据实践经验,一般建议证件类的小图(文字少)在1M以下,A4纸大小的密集文档大图在2M以下。

    来自:帮助中心

    查看更多 →

  • 评估

    上传测试图片或者上传在线图片,评估模板。 图4 评估模板 本地上传图片 默认进入“本地上传”页签,单击“上传图片”,或者拖拽测试图片至虚线框内上传图片区域,上传本地的图片作为测试图片。 上传图片后,右侧会显示文字识别结果,包括“识别区”和对应的“识别结果”。 上传在线图片 单击“

    来自:帮助中心

    查看更多 →

  • 使用单模板工作流开发应用

    Pro的文字识别套件提供了通用单模板工作流,通过工作流指引可构建文字识别模板,识别单个板式图片中的文字,快速实现文档、票证等场景的文字识别。 本章节提供一个身份证样例,帮助您快速熟悉使用文字识别套件中的通用单模板工作流开发应用的过程。通过上传模板图片、框选参照字段和识别区,自动训

    来自:帮助中心

    查看更多 →

  • 方案概述

    FunctionGraph,用于实现调用文字识别服务业务逻辑,当收到OBS上传图片通知后,自动调用文字识别 OCR服务进行电子面单识别、网络图片识别并将结果存放在OBS桶内。 使用文字识别 OCR,提供电子面单识别和网络图片识别。用户只需要将电子面单图片或含有收/寄件信息的截图上传至OBS桶,即可自动识别提取收/

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    在图片模板中框选识别区,确定模板图片中需要识别文字位置。 框选识别区 评估应用 通过上传与模板图片同一板式的测试图片,评估图片识别结果是否正确。 评估应用 部署服务 模板图片评估后,可以部署模板至文字识别开发套件中,开发属于自己的文字识别应用,此应用用于识别自己所上传的模板样式的图片。 部署服务 父主题: 通用单模板工作流

    来自:帮助中心

    查看更多 →

  • 如何选购合适的API

    通用文字识别 :提取图片内的文字及其对应位置信息。 手写文字识别识别手写文字、印刷文字信息。 网络图片识别识别网络图片内的所有文字及其对应位置信息。 证件类 身份证识别、护照识别、银行卡识别 驾驶证识别、行驶证识别、道路运输证识别、车牌识别、VIN码识别 营业执照识别、名片识别 票据类

    来自:帮助中心

    查看更多 →

  • 框选识别区

    框选识别区 在文字识别过程中,需要确定图片识别文字位置,这就需要在图片模板中框选识别区。 识别区指图片中待识别文字位置。所有需要识别图片中都会包含此识别区的字段,且位置固定不变,因此模型可以通过识别区找到需要识别内容的位置。 前提条件 已在文字识别套件控制台选择“多模板分

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    上传模板图片后,需要对模板图片进行预处理,去掉冗余部分,将图片旋转至水平,保证模型识别的准确性。 定义预处理 框选参照字段 在图片模板中框选参照字段,用于矫正图片的方向,进而在正确的方向上,识别图片中的结构化信息。 框选参照字段 框选识别区 在图片模板中框选识别区,确定模板图片中需要识别文字位置。

    来自:帮助中心

    查看更多 →

  • 提取图片中的文字暗水印(文件地址版本)

    提取图片中的文字暗水印(文件地址版本) 功能介绍 对指定存储地址信息(目前支持OBS)的已嵌入文字暗水印的图片提取文字暗水印,支持的图片格式为:*.jpg, *.jpeg, *.jpe, *.png, *.bmp, *.dib, *.rle, *.tiff, *.tif, *.ppm

    来自:帮助中心

    查看更多 →

  • 调用文字识别套件API,报错ModelArts.4204服务未开通怎么办?

    调用文字识别套件API,报错ModelArts.4204服务未开通怎么办? 问题现象 子账号在使用自定义OCR( ModelArts Pro 文字识别套件)生成的api时,出现如下报错。表示用户,没有OCR权限或没有开通ModelArts Pro服务。 "ModelArts.4204"、"Request

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了