中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    大数据 学习 更多内容
  • 大容量数据库背景介绍

    子问题的解的合并。对于容量数据场景,数据库提供对数据进行“分治处理”的方式即分区,将逻辑数据库或其组成元素划分为不同的独立部分,每一个分区维护逻辑上存在相类似属性的数据,这样就把庞大的数据整体进行了切分,有利于数据的管理、查找和维护。 父主题: 容量数据

    来自:帮助中心

    查看更多 →

  • 获取大屏指定组件数据

    获取屏指定组件数据 功能介绍 获取屏指定组件数据。 URI POST /v1/{project_id}/screens/{screen_id}/query-data 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 项目ID。获取方法请参见获取项目ID。

    来自:帮助中心

    查看更多 →

  • 大容量数据库背景介绍

    子问题的解的合并。对于容量数据场景,数据库提供对数据进行“分治处理”的方式即分区,将逻辑数据库或其组成元素划分为不同的独立部分,每一个分区维护逻辑上存在相类似属性的数据,这样就把庞大的数据整体进行了切分,有利于数据的管理、查找和维护。 父主题: 容量数据

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    随时查看当前任务的状态。 创建NLP模型增量预训练任务 在模型完成创建NLP模型预训练任务预训练后,可以对训练后的模型继续训练,该过程称为“增量预训练”。 创建NLP模型增量预训练任务前,请确保有已完成预训练的NLP模型。 创建NLP模型增量预训练任务的步骤如下: 登录ModelArts

    来自:帮助中心

    查看更多 →

  • 大容量数据库背景介绍

    子问题的解的合并。对于容量数据场景,数据库提供对数据进行“分治处理”的方式即分区,将逻辑数据库或其组成元素划分为不同的独立部分,每一个分区维护逻辑上存在相类似属性的数据,这样就把庞大的数据整体进行了切分,有利于数据的管理、查找和维护。 父主题: 容量数据

    来自:帮助中心

    查看更多 →

  • 大容量数据库背景介绍

    子问题的解的合并。对于容量数据场景,数据库提供对数据进行“分治处理”的方式即分区,将逻辑数据库或其组成元素划分为不同的独立部分,每一个分区维护逻辑上存在相类似属性的数据,这样就把庞大的数据整体进行了切分,有利于数据的管理、查找和维护。 父主题: 容量数据

    来自:帮助中心

    查看更多 →

  • 可信联邦学习作业

    可信联邦学习作业 概述 创建横向训练型作业 横向联邦训练作业对接MA 创建横向评估型作业 创建纵向联邦学习作业 执行作业 查看作业计算过程和作业报告 删除作业 安全沙箱机制

    来自:帮助中心

    查看更多 →

  • 使用数据工程构建NLP大模型数据集

    32K版本:32768 评测NLP模型所需数据量 要求所有文本大小最大不超过100MB,目录下文件数量最多不超过100个。数据条数范围为:3-1000条。 构建NLP模型数据集流程 在ModelArts Studio模型开发平台中,使用数据工程构建盘古NLP模型数据集流程见表3。 表3

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部 服务器 错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱和IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    和“回归”两种任务类型。 图2 新建作业 在弹出的界面进行数据选择,选择两方数据集作为整个作业的数据集,必须选择一个当前代理的数据集,另一个数据集可以来自空间中的任意一方。两方的数据集中一方数据集只含有特征,另一方的数据集必须含有标签。 重试:开关开启后,执行失败的作业会根据配置

    来自:帮助中心

    查看更多 →

  • 查询并导出课程学习记录

    查询并导出课程学习记录 前提条件 用户具有“查询课程记录”权限 操作步骤: 登录ISDP系统,选择“作业人员->学习管理->学习记录”,查询课程学习记录 点击顶部“课程学习记录”可以在这里对学习记录进行查询以及导出,筛选说明如下表: 图1 课程记录查询条件 表1 “课程学习记录”筛选项

    来自:帮助中心

    查看更多 →

  • 大屏

    如图6所示,选择开发场景为“屏”,单击右侧区域的“开发”,进入到配置的AppCube屏开发环境。 图6 进入屏开发环境 如果使用系统默认提供开发环境,进入到默认环境的业务屏。 如果使用配置的开发环境,进入到配置的开发地址,配置的地址不是直接进入业务屏,参见下图进入业务屏。 如图7所示,单击“导入项目包”。

    来自:帮助中心

    查看更多 →

  • 方案概述

    识,提升问答准确率15%,模型推理效率提升30%;儿童和学生专属的教育AI模型,且AI模型C-Eval综合排名前三、Chat类第一。 满足个性化教学:通过跨学科和智能化教学辅助,满足学生的个性化需求,激发学习兴趣和创造力;利用AI分析学生学习数据和心理状态,为教师提供科学依

    来自:帮助中心

    查看更多 →

  • 使用数据工程构建科学计算大模型数据集

    使用数据工程构建科学计算模型数据集 科学计算模型支持接入的数据集类型 盘古科学计算模型仅支持接入气象类数据集,该数据集格式要求请参见气象类数据集格式要求。 训练科学计算模型训练数据要求所需数据量 构建科学计算模型进行训练的数据要求见表1。 表1 科学计算模型训练数据要求

    来自:帮助中心

    查看更多 →

  • 大模型微调需要的数据有要求吗?

    模型微调需要的数据有要求吗? AI原生应用引擎用于模型微调的数据集任务领域为“ 自然语言处理 ”、数据集格式为“对话文本”。 文件内容要求为标准json数组,例如: [{"instruction": "aaa", "input": "aaa", "output": "aaa"},{"instruction":

    来自:帮助中心

    查看更多 →

  • 大屏

    屏 新建屏 更新屏 获取屏组件列表 获取屏指定组件数据 批量发布屏 批量删除屏 批量下线

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型评测数据集

    创建NLP模型评测数据集 NLP模型支持人工评测与自动评测,在执行模型评测任务前,需创建评测数据集。 评测数据集的创建步骤与训练数据集一致,本章节仅做简单介绍,详细步骤请参见使用数据工程构建NLP模型数据集。 登录ModelArts Studio平台,进入所需空间。 在左侧导航栏中选择“数据工程

    来自:帮助中心

    查看更多 →

  • 保存横向联邦学习作业

    ague_id}/fl-jobs/{job_id} 保存横向联邦学习作业 响应示例 无 状态码 状态码 描述 200 保存横向联邦学习作业成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了