MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce kmeans均值聚类 更多内容
  • MapReduce统计样例代码

    educer抽象类实现。 main方法提供建立一个MapReduce job,并提交MapReduce作业到Hadoop集群。 代码样例 下面代码片段仅为演示,具体代码参见com.huawei.bigdata.mapreduce.examples.FemaleInfoCollector类:

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    MapReduce Java API接口介绍 关于MapReduce的详细API可以参考官方网站:http://hadoop.apache.org/docs/r3.1.1/api/index.html 常用接口 MapReduce中常见的类如下: org.apache.hadoop

    来自:帮助中心

    查看更多 →

  • 配置MapReduce shuffle address

    配置MapReduce shuffle address 配置场景 当MapReduce shuffle服务启动时,它尝试基于localhost绑定IP。如果需要MapReduce shuffle服务连接特定IP,可以参考该章节进行配置。 配置描述 当需要MapReduce shu

    来自:帮助中心

    查看更多 →

  • 什么是MapReduce服务

    什么是MapReduce服务 大数据是人类进入互联网时代以来面临的一个巨大问题:社会生产生活产生的数据量越来越大,数据种类越来越多,数据产生的速度越来越快。传统的数据处理技术,比如说单机存储,关系数据库已经无法解决这些新的大数据问题。为解决以上大数据处理问题,Apache基金会推

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ

    来自:帮助中心

    查看更多 →

  • 准备MapReduce开发环境

    准备MapReduce开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。

    来自:帮助中心

    查看更多 →

  • MapReduce样例工程介绍

    当前 MRS 提供以下MapReduce相关样例工程: 表1 MapReduce相关样例工程 样例工程位置 描述 mapreduce-example-security MapReduce统计数据的应用开发示例: 提供了一个MapReduce统计数据的应用开发示例,通过类CollectionMa

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    educer抽象类实现。 main方法提供建立一个MapReduce job,并提交MapReduce作业到hadoop集群。 代码样例 下面代码片段仅为演示,具体代码参见com.huawei.bigdata.mapreduce.examples.FemaleInfoCollector类:

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    MapReduce Java API接口介绍 关于MapReduce的详细API可以参考官方网站。 http://hadoop.apache.org/docs/r3.1.1/api/index.html 常用接口 MapReduce中常见的类如下: org.apache.hadoop

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发简介

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    educer抽象类实现。 main方法提供建立一个MapReduce job,并提交MapReduce作业到hadoop集群。 代码样例 下面代码片段仅为演示,具体代码参见com.huawei.bigdata.mapreduce.examples.FemaleInfoCollector类:

    来自:帮助中心

    查看更多 →

  • 通用工具

    通用工具 MOL 3D Viewer MOL Editor 聚类分析 父主题: 功能模块

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 药物作业管理

    药物作业管理 获取药物作业列表 取消药物作业 删除药物作业 更新药物作业 创建分子聚类作业 父主题: API(盘古辅助制药平台)

    来自:帮助中心

    查看更多 →

  • 使用自动分组智能标注作业

    内置了分组算法,您可以针对您选中的数据,执行自动分组,提升您的数据标注效率。 自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类结果进行处理,可以分组打标或者清洗图片。 例如,用户通过搜索引擎搜索XX,将相关图片下载并上传到数据集,然后再使用自动分

    来自:帮助中心

    查看更多 →

  • 什么是ATGen

    3种测试数据生成方法。 自动挖掘生成测试判定点:基于接口定义和状态码生成显性测试判定点。 测试结果聚类和批量高效确认:支持按照业务返回码、相似子序列,参数生成类型对测试结果分层聚类,便于测试人员按类别批量确认失败,并一键提单。 目前“ATGen”属于测试用例中的高阶特性,此功能为限时免费,后续需要单独购买使用。

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 靶点优化

    图2 设置靶点优化MD配置页面 查看靶点优化结果 单击作业名称,进入作业结果页面,拟时结果根据构象 RMS D聚类。 单击“查看轨迹”,下载运动轨迹。 单击“下游分析”,将聚类之后的不同构象进行分子对接。 单击每一个Model的按钮,查看构象。 单击每个Model的按钮,可以收藏构象,收藏后可直接在收藏夹页查看。

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用开发环境

    准备MapReduce应用开发环境 MapReduce应用开发环境简介 准备MapReduce应用开发用户 准备Eclipse与JDK 准备MapReduce应用运行环境 导入并配置MapReduce样例工程 配置MapReduce应用安全认证 父主题: MapReduce开发指南

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用运行环境

    准备MapReduce应用运行环境 MapReduce的运行环境可以部署在Linux环境下。您可以按照如下操作完成运行环境准备。 操作步骤 确认服务端YARN组件和MapReduce组件已经安装,并正常运行。 客户端运行环境已安装1.7或1.8版本的JDK。 客户端机器的时间与H

    来自:帮助中心

    查看更多 →

  • 查看MapReduce应用调测结果

    查看MapReduce应用调测结果 MapReduce应用程序运行完成后,可以通过WebUI查看应用程序运行情况,也可以通过MapReduce日志获取应用运行情况。 通过MapReduce服务的WebUI进行查看 登录MRS Manager,单击“服务管理 > MapReduce >

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了