MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce map执行速度 更多内容
  • Mapreduce应用开发建议

    Mapreduce应用开发建议 全局使用的配置项,在“mapred-site.xml”配置文件中指定。 如下示例给出接口所对应的“mapred-site.xml”中的配置项。 示例: setMapperClass(Class <extends Mapper> cls) ->“mapreduce

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发概述

    MapReduce应用开发概述 MapReduce应用开发简介 MapReduce应用开发常用概念 MapReduce应用开发流程介绍 父主题: MapReduce开发指南

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    Hadoop基本shell命令,包括提交MapReduce作业,终止MapReduce作业,进行HDFS文件系统各项操作等。 MapReduce输入输出(InputFormat,OutputFormat) MapReduce框架根据用户指定的InputFormat切割数据集,读取数据,并提供给map任务多条键

    来自:帮助中心

    查看更多 →

  • 调测MapReduce应用

    调测MapReduce应用 在本地Windows环境中调测MapReduce应用 在Linux环境中调测MapReduce应用 父主题: MapReduce开发指南(普通模式)

    来自:帮助中心

    查看更多 →

  • MapReduce常见问题

    MapReduce常见问题 ResourceManager进行主备切换后,任务中断后运行时间过长 MapReduce任务长时间无进展 为什么运行任务时客户端不可用 在缓存中找不到HDFS_DELEGATION_TOKEN如何处理 如何在提交MapReduce任务时设置任务优先级

    来自:帮助中心

    查看更多 →

  • 运行MapReduce作业

    运行MapReduce作业 用户可将自己开发的程序提交到 MRS 中,执行程序并获取结果,本章节指导您如何在MRS集群中提交一个MapReduce作业。 MapReduce作业用于提交Hadoop jar程序快速并行处理大量数据,是一种分布式数据处理模式。 用户可以在MRS管理控制台

    来自:帮助中心

    查看更多 →

  • 配置MapReduce Job基线

    才能保证资源充分利用,任务的并发度达到最大。可以通过调整处理的数据量大小,以及调整map和reduce个数来实现。 reduce个数的控制使用“mapreduce.job.reduces”。 map个数取决于使用了哪种InputFormat,以及待处理的数据文件是否可分割。默认的

    来自:帮助中心

    查看更多 →

  • 配置使用分布式缓存执行MapReduce任务

    以客户端安装用户,登录安装客户端的节点。 执行以下命令,切换到客户端安装目录。 cd 客户端安装路径 执行以下命令配置环境变量。 source bigdata_env 如果集群为安全模式,执行以下命令进行用户认证。普通模式集群无需执行用户认证。 kinit 组件业务用户 将指定版本的MapReduce tar包

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ

    来自:帮助中心

    查看更多 →

  • 准备MapReduce开发环境

    准备MapReduce开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。

    来自:帮助中心

    查看更多 →

  • MapReduce样例工程介绍

    当前MRS提供以下MapReduce相关样例工程: 表1 MapReduce相关样例工程 样例工程位置 描述 mapreduce-example-security MapReduce统计数据的应用开发示例: 提供了一个MapReduce统计数据的应用开发示例,通过类CollectionMa

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    FemaleInfoCollector类: 样例1:类CollectionMapper定义Mapper抽象类的map()方法和setup()方法。 public static class CollectionMapper extends Mapper<Object, Text, Text

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    setMapperClass(Class<extends Mapper> cls) 核心接口,指定MapReduce作业的Mapper类,默认为空。也可以在“mapred-site.xml”中配置“mapreduce.job.map.class”项。 setReducerClass(Class<extends

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发简介

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    FemaleInfoCollector类: 样例1:类CollectionMapper定义Mapper抽象类的map()方法和setup()方法。 public static class CollectionMapper extends Mapper<Object, Text, Text

    来自:帮助中心

    查看更多 →

  • 什么是MapReduce服务

    什么是MapReduce服务 大数据是人类进入互联网时代以来面临的一个巨大问题:社会生产生活产生的数据量越来越大,数据种类越来越多,数据产生的速度越来越快。传统的数据处理技术,比如说单机存储,关系数据库已经无法解决这些新的大数据问题。为解决以上大数据处理问题,Apache基金会推

    来自:帮助中心

    查看更多 →

  • 配置使用分布式缓存执行MapReduce任务

    以客户端安装用户,登录安装客户端的节点。 执行以下命令,切换到客户端安装目录。 cd 客户端安装路径 执行以下命令配置环境变量。 source bigdata_env 如果集群为安全模式,执行以下命令进行用户认证。普通模式集群无需执行用户认证。 kinit 组件业务用户 将指定版本的MapReduce tar包

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例程序

    MapReduce统计样例程序 MapReduce统计样例程序开发思路 MapReduce统计样例代码 父主题: 开发MapReduce应用

    来自:帮助中心

    查看更多 →

  • MapReduce样例工程介绍

    当前MRS提供以下MapReduce相关样例工程: 表1 MapReduce相关样例工程 样例工程位置 描述 mapreduce-example-normal MapReduce统计数据的应用开发示例: 提供了一个MapReduce统计数据的应用开发示例,通过类CollectionMapper

    来自:帮助中心

    查看更多 →

  • 配置MapReduce应用安全认证

    入安全认证代码,确保MapReduce程序能够正常运行。 安全认证有两种方式: 命令行认证: 提交MapReduce应用程序运行前,在MapReduce客户端执行如下命令获得认证。 kinit 组件业务用户 代码认证: 通过获取客户端的principal和keytab文件在应用程序中进行认证。

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例程序

    MapReduce统计样例程序 MapReduce统计样例程序开发思路 MapReduce统计样例代码 父主题: 开发MapReduce应用

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了