MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce输出到hive 更多内容
  • Hive与其他组件的关系

    Hive与其他组件的关系 Hive与HDFS组件的关系 Hive是Apache的Hadoop项目的子项目,Hive利用HDFS作为其文件存储系统。Hive通过解析和计算处理结构化的数据,Hadoop HDFS则为Hive提供了高可靠性的底层存储支持。Hive数据库中的所有数据文件都可以存储在Hadoop

    来自:帮助中心

    查看更多 →

  • Hive应用开发常用概念

    Hive应用开发常用概念 客户端 客户端直接面向用户,可通过Java API、Thrift API访问服务端进行Hive的相关操作。本文中的Hive客户端特指Hive client的安装目录,里面包含通过Java API访问Hive的样例代码。 HiveQL语言 Hive Query

    来自:帮助中心

    查看更多 →

  • Hive

    Hive 创建hive catalog 通过连接Hive Metastore,或者兼容Hive Metastore的元数据服务,Doris可以自动获取Hive的库表信息,并进行数据查询。 除了Hive外,很多其他系统也会使用Hive Metastore存储元数据。所以通过Hive

    来自:帮助中心

    查看更多 →

  • HIVE优化

    HIVE优化 概述 Hive架构 Hive提供了Hadoop的SQL能力,主要参考标准的SQL,Hive进行了部分的修改,形成了自己的特有的SQL语法HQL(Hive SQL),更加适合于Hadoop的分布式体系,该SQL目前是Hadoop体系的事实标准。 Hive调优 用户输入

    来自:帮助中心

    查看更多 →

  • Hive应用开发常用概念

    ,吸收了Hive的DDL命令。为MapReduce提供读写接口,提供Hive命令行接口来进行数据定义和元数据查询。基于 MRS 的HCatalog功能,HiveMapReduce开发人员能够共享元数据信息,避免中间转换和调整,能够提升数据处理的效率。 WebHCat WebHCat运行用户通过Rest

    来自:帮助中心

    查看更多 →

  • MapReduce引擎无法查询Tez引擎执行union语句写入的数据

    MapReduce引擎无法查询Tez引擎执行union语句写入的数据 问题 Hive通过Tez引擎执行union相关语句写入的数据,切换到Mapreduce引擎后进行查询,发现数据没有查询出来。 回答 由于Hive使用Tez引擎在执行union语句时,生成的输出文件会存在HIVE_UNION_SUBDIR目录。

    来自:帮助中心

    查看更多 →

  • Hive任务执行中报栈内存溢出导致任务执行失败

    整)。 永久增加map内存mapreduce.map.memory.mb和mapreduce.map.java.opts的值: 进入Hive服务配置页面: MRS 3.x之前版本,单击集群名称,登录集群详情页面,选择“组件管理 > Hive > 服务配置”,单击“基础配置”下拉菜单,选择“全部配置”。

    来自:帮助中心

    查看更多 →

  • 配置Hive任务的最大map数

    配置Hive任务的最大map数 “hive.mapreduce.per.task.max.splits”参数可用于从服务端限定Hive任务的最大map数,避免HiveSever服务过载而引发的性能问题。 操作步骤 登录 FusionInsight Manager页面,选择“集群 >

    来自:帮助中心

    查看更多 →

  • Tez

    业。 图1 Hive基于MapReduce提交任务和基于Tez提交任务流程图 Hive on MapReduce任务中包含多个MapReduce任务,每个任务都会将中间结果存储到HDFS上——前一个步骤中的reducer为下一个步骤中的mapper提供数据。Hive on Tez

    来自:帮助中心

    查看更多 →

  • Hive应用开发常用概念

    HCatalog HCatalog是建立在Hive元数据之上的一个表信息管理层,吸收了Hive的DDL命令。为Mapreduce提供读写接口,提供Hive命令行接口来进行数据定义和元数据查询。基于MRS的HCatalog功能,HiveMapreduce开发人员能够共享元数据信息,避免中间转换和调整,能够提升数据处理的效率。

    来自:帮助中心

    查看更多 →

  • 新建MRS Hive数据连接

    新建MRS Hive数据连接 连接MRS Hive前,需要满足以下条件: 已创建一个低于2.0.0版本的MRS集群,集群包含Hive组件,并且请确保MRS集群已关闭Kerberos认证。对于开启Kerberos认证的MRS Hive数据源, DLV 暂不支持。 已获取MRS Hive数据源的地址。

    来自:帮助中心

    查看更多 →

  • Hive配置类问题

    Hive配置类问题 Hive SQL执行报错:java.lang.OutOfMemoryError: Java heap space. 解决方案: 对于MapReduce任务,增大下列参数: set mapreduce.map.memory.mb=8192; set mapreduce

    来自:帮助中心

    查看更多 →

  • MapReduce引擎无法查询Tez引擎执行union语句写入的数据

    MapReduce引擎无法查询Tez引擎执行union语句写入的数据 问题 Hive通过Tez引擎执行union相关语句写入的数据,切换到Mapreduce引擎后进行查询,发现数据没有查询出来。 回答 由于Hive使用Tez引擎在执行union语句时,生成的输出文件会存在HIVE

    来自:帮助中心

    查看更多 →

  • Hive应用开发简介

    HQL语言 Hive Query Language,类SQL语句。 HCatalog HCatalog是建立在Hive元数据之上的一个表信息管理层,吸收了Hive的DDL命令。为MapReduce提供读写接口,提供Hive命令行接口来进行数据定义和元数据查询。基于MRS的HCatal

    来自:帮助中心

    查看更多 →

  • MapReduce

    MapReduce MapReduce基本原理 MapReduce与其他组件的关系 MapReduce开源增强特性 父主题: 组件介绍

    来自:帮助中心

    查看更多 →

  • MapReduce开源增强特性

    支持扩容减容、实例迁移、升级、健康检查等。 MapReduce开源增强特性:特定场景优化MapReduce的Merge/Sort流程提升MapReduce性能 下图展示了MapReduce任务的工作流程。 图2 MapReduce 作业 图3 MapReduce作业执行流程 Reduce过程分

    来自:帮助中心

    查看更多 →

  • spark-shell执行SQL跨文件系统load数据到Hive表失败

    当使用load导入数据到Hive表的时候,属于需要跨文件系统的情况(例如原数据在HDFS上,而Hive表数据存放在OBS上),并且文件长度大于阈值(默认32 MB),则会触发使用distcp的MapReduce任务来执行数据迁移操作。这个MapReduce任务配置直接从Spark任

    来自:帮助中心

    查看更多 →

  • Hive常见问题

    Hive常见问题 如何删除所有HiveServer中的永久函数 为什么已备份的Hive表无法执行drop操作 如何在Hive自定义函数中操作本地文件 如何强制停止Hive执行的MapReduce任务 Hive不支持复杂类型字段名称中包含哪些特殊字符 如何对Hive表大小数据进行监控

    来自:帮助中心

    查看更多 →

  • Hive

    Hive 创建Hive Catalog Hive方言 Hive源表 Hive结果表 Hive维表 使用Temporal join关联维表的最新分区 使用Temporal join关联维表的最新版本 父主题: Connector列表

    来自:帮助中心

    查看更多 →

  • Hive

    Hive Hive基本原理 Hive CBO原理介绍 Hive与其他组件的关系 Hive开源增强特性 父主题: 组件介绍

    来自:帮助中心

    查看更多 →

  • Hive支持ZSTD压缩格式

    Hive支持ZSTD压缩格式 ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式,本特性使得Hive支持ZSTD压缩格式的表。Hive支持基于ZSTD压缩的存储格式有常见的ORC、RCFile、TextFi

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了