MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce mapred 区别 更多内容
  • MapReduce Java API接口介绍

    RawComparator> cls) 指定MapReduce作业的map任务的输出结果压缩类,默认不使用压缩。也可以在“mapred-site.xml”中配置“mapreduce.map.output.compress”和“mapreduce.map.output.compress

    来自:帮助中心

    查看更多 →

  • MapReduce Action

    class Reducer类名 mapred.input.dir MapReduce处理数据的输入目录 mapred.output.dir MapReduce处理后结果数据输出目录 mapred.map.tasks MapReduce map任务个数 “${变量名}”表示:该值来自“job

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    RawComparator> cls) 指定MapReduce作业的map任务的输出结果压缩类,默认不使用压缩。也可以在“mapred-site.xml”中配置“mapreduce.map.output.compress”和“mapreduce.map.output.compress

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    RawComparator> cls) 指定MapReduce作业的map任务的输出结果压缩类,默认不使用压缩。也可以在“mapred-site.xml”中配置“mapreduce.map.output.compress”和“mapreduce.map.output.compress

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    MapReduce Java API接口介绍 MapReduce常用接口 MapReduce中常见的类如下。 org.apache.hadoop.mapreduce.Job:用户提交MR作业的接口,用于设置作业参数、提交作业、控制作业执行以及查询作业状态。 org.apache.hadoop

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    RawComparator> cls) 指定MapReduce作业的map任务的输出结果压缩类,默认不使用压缩。也可以在“mapred-site.xml”中配置“mapreduce.map.output.compress”和“mapreduce.map.output.compress

    来自:帮助中心

    查看更多 →

  • MapReduce Action

    class Reducer类名 mapred.input.dir MapReduce处理数据的输入目录 mapred.output.dir MapReduce处理后结果数据输出目录 mapred.map.tasks MapReduce map任务个数 “${变量名}”表示:该值来自job

    来自:帮助中心

    查看更多 →

  • 配置Oozie MapReduce作业

    class Reducer类名 mapred.input.dir MapReduce处理数据的输入目录 mapred.output.dir MapReduce处理后结果数据输出目录 mapred.map.tasks MapReduce map任务个数 “${变量名}”表示:该值来自job

    来自:帮助中心

    查看更多 →

  • 配置Oozie MapReduce作业

    class Reducer类名 mapred.input.dir MapReduce处理数据的输入目录 mapred.output.dir MapReduce处理后结果数据输出目录 mapred.map.tasks MapReduce map任务个数 “${变量名}”表示:该值来自“job

    来自:帮助中心

    查看更多 →

  • Mapreduce应用开发建议

    Mapreduce应用开发建议 全局使用的配置项,在“mapred-site.xml”配置文件中指定。 如下示例给出接口所对应的“mapred-site.xml”中的配置项。 示例: setMapperClass(Class <extends Mapper> cls) ->“mapreduce

    来自:帮助中心

    查看更多 →

  • 配置使用分布式缓存执行MapReduce任务

    可以将多个版本的MapReduce tar包上传至HDFS。不同的“mapred-site.xml”文件可以指向不同的位置。用户在此之后可以针对特定的“mapred-site.xml”文件运行任务。以下是一个针对x版本的MapReduce tar包运行MapReduce任务的样例: hadoop

    来自:帮助中心

    查看更多 →

  • 配置使用分布式缓存执行MapReduce任务

    可以将多个版本的MapReduce tar包上传至HDFS。不同的“mapred-site.xml”文件可以指向不同的位置。用户在此之后可以针对特定的“mapred-site.xml”文件运行任务。以下是一个针对x版本的MapReduce tar包运行MapReduce任务的样例: hadoop

    来自:帮助中心

    查看更多 →

  • 配置MapReduce shuffle address

    配置MapReduce shuffle address 配置场景 当MapReduce shuffle服务启动时,它尝试基于localhost绑定IP。如果需要MapReduce shuffle服务连接特定IP,可以参考该章节进行配置。 配置描述 当需要MapReduce shu

    来自:帮助中心

    查看更多 →

  • 通过Windows系统提交MapReduce任务

    通过Windows系统提交MapReduce任务 配置场景 用户将MapReduce任务从Windows上提交到Linux上运行,则“mapreduce.app-submission.cross-platform”参数值需配置为“true”。若集群无此参数,或参数值为“false

    来自:帮助中心

    查看更多 →

  • 配置MapReduce shuffle address

    配置MapReduce shuffle address 配置场景 当MapReduce shuffle服务启动时,它尝试基于localhost绑定IP。如果需要MapReduce shuffle服务连接特定IP,可以参考该章节进行配置。 配置描述 当需要MapReduce shu

    来自:帮助中心

    查看更多 →

  • 开启Native Task特性后,Reduce任务在部分操作系统运行失败

    Task特性后,Reduce任务在部分操作系统运行失败。 回答 运行包含Reduce的Mapreduce任务时,通过-Dmapreduce.job.map.output.collector.class=org.apache.hadoop.mapred.nativetask.NativeMapOutputCo

    来自:帮助中心

    查看更多 →

  • 多CPU内核下MapReduce调优配置

    Hadoop中磁盘配置数 ]。 mapreduce.map.memory.mb 说明: 需要在客户端进行配置,配置文件路径:客户端安装目录/HDFS/hadoop/etc/hadoop/mapred-site.xml。 4096 Client mapreduce.reduce.memory

    来自:帮助中心

    查看更多 →

  • 配置MapReduce集群管理员列表

    配置MapReduce集群管理员列表 配置场景 该功能主要用于指定MapReduce集群管理员。 其中,集群管理员列表由参数“mapreduce.cluster.administrators”指定,集群管理员admin具有所有可以操作的权限。 配置描述 进入Mapreduce服务

    来自:帮助中心

    查看更多 →

  • 降低MapReduce客户端运行任务失败率

    降低MapReduce客户端运行任务失败率 配置场景 当网络不稳定或者集群IO、CPU负载过高的情况下,通过调整如下参数值,降低客户端应用的失败率,保证应用的正常运行。 配置描述 在客户端的“mapred-site.xml”配置文件中调整如下参数。 “mapred-site.xm

    来自:帮助中心

    查看更多 →

  • MapReduce二次开发远程调试

    MapReduce二次开发远程调试 问题 MapReduce二次开发过程中如何远程调试业务代码? 回答 MapReduce开发调试采用的原理是Java的远程调试机制,在Map/Reduce任务启动时,添加Java远程调试命令。 首先理解两个参数:“mapreduce.map.java

    来自:帮助中心

    查看更多 →

  • 通过Windows系统提交MapReduce任务

    通过Windows系统提交MapReduce任务 配置场景 用户将MapReduce任务从Windows上提交到Linux上运行,则“mapreduce.app-submission.cross-platform”参数值需配置为“true”。若集群无此参数,或参数值为“false

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了