MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce本地运行 更多内容
  • 运行MapReduce作业

    运行MapReduce作业 用户可将自己开发的程序提交到 MRS 中,执行程序并获取结果,本章节指导您如何在MRS集群中提交一个MapReduce作业。 MapReduce作业用于提交Hadoop jar程序快速并行处理大量数据,是一种分布式数据处理模式。 用户可以在MRS管理控制台

    来自:帮助中心

    查看更多 →

  • 编译并运行MapReduce应用

    编译并运行MapReduce应用 在程序代码完成开发后,可以在Linux环境中运行应用。 MapReduce应用程序只支持在Linux环境下运行,不支持在Windows环境下运行。 操作步骤 生成MapReduce应用可执行包。 执行mvn package生成jar包,在工程目录

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用运行环境

    准备MapReduce应用运行环境 MapReduce运行环境可以部署在Linux环境下。您可以按照如下操作完成运行环境准备。 操作步骤 确认服务端YARN组件和MapReduce组件已经安装,并正常运行。 客户端运行环境已安装1.7或1.8版本的JDK。 客户端机器的时间与H

    来自:帮助中心

    查看更多 →

  • 准备MapReduce开发和运行环境

    准备MapReduce开发和运行环境 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。

    来自:帮助中心

    查看更多 →

  • 准备MapReduce开发和运行环境

    准备MapReduce开发和运行环境 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。

    来自:帮助中心

    查看更多 →

  • 准备MapReduce开发和运行环境

    准备MapReduce开发和运行环境 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。

    来自:帮助中心

    查看更多 →

  • 在本地Windows环境中调测MapReduce应用

    本地Windows环境中调测MapReduce应用 操作场景 在程序代码完成开发后,您可以在Windows环境中运行应用。本地和集群业务平面网络互通时,您可以直接在本地进行调测。 MapReduce应用程序运行完成后,可通过如下方式查看应用程序的运行情况。 在IntelliJ IDEA中查看应用程序运行情况。

    来自:帮助中心

    查看更多 →

  • 在本地Windows环境中调测MapReduce应用

    IDEA中查看应用程序运行情况。 通过MapReduce日志获取应用程序运行情况。 登录MapReduce WebUI查看应用程序运行情况。 登录Yarn WebUI查看应用程序运行情况。 在MapReduce任务运行过程中禁止重启HDFS服务,否则可能会导致任务失败。 运行统计样例程序

    来自:帮助中心

    查看更多 →

  • 在本地Windows环境中调测MapReduce应用

    IDEA中查看应用程序运行情况。 通过MapReduce日志获取应用程序运行情况。 登录MapReduce WebUI查看应用程序运行情况。 登录Yarn WebUI查看应用程序运行情况。 在MapReduce任务运行过程中禁止重启HDFS服务,否则可能会导致任务失败。 运行统计样例程序

    来自:帮助中心

    查看更多 →

  • 在本地Windows环境中调测MapReduce应用

    本地Windows环境中调测MapReduce应用 操作场景 在程序代码完成开发后,您可以在Windows环境中运行应用。本地和集群业务平面网络互通时,您可以直接在本地进行调测。 MapReduce应用程序运行完成后,可通过如下方式查看应用程序的运行情况。 在IntelliJ IDEA中查看应用程序运行情况。

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    ,需要进行安全认证。 配置MapReduce应用安全认证 根据业务场景开发程序 根据实际业务场景开发程序,调用组件接口实现对应功能。 开发MapReduce应用 编译并运行程序 将开发好的程序编译运行,用户可在本地Windows开发环境中进行程序调测运行,也可以将程序编译为Jar包后,提交到Linux节点上运行。

    来自:帮助中心

    查看更多 →

  • 多个NameService环境下运行MapReduce任务失败

    多个NameService环境下运行MapReduce任务失败 问题 多个NameService环境下,运行使用viewFS功能的MapReduce或YARN任务失败。 回答 当使用viewFS时,只有在viewFS中挂载的目录才能被访问到。所以最可能的原因是配置的路径没有在viewFS的挂载点上。例如:

    来自:帮助中心

    查看更多 →

  • 配置使用分布式缓存执行MapReduce任务

    可以将多个版本的MapReduce tar包上传至HDFS。不同的“mapred-site.xml”文件可以指向不同的位置。用户在此之后可以针对特定的“mapred-site.xml”文件运行任务。以下是一个针对x版本的MapReduce tar包运行MapReduce任务的样例: hadoop

    来自:帮助中心

    查看更多 →

  • 配置使用分布式缓存执行MapReduce任务

    可以将多个版本的MapReduce tar包上传至HDFS。不同的“mapred-site.xml”文件可以指向不同的位置。用户在此之后可以针对特定的“mapred-site.xml”文件运行任务。以下是一个针对x版本的MapReduce tar包运行MapReduce任务的样例: hadoop

    来自:帮助中心

    查看更多 →

  • 本地运行Spark程序连接MRS集群的Hive、HDFS

    本地运行Spark程序连接MRS集群的Hive、HDFS 问题 本地运行Spark程序时,如何连接MRS集群的Hive和HDFS? 回答 为每一个Master节点申请并绑定弹性公网IP。 在本地Windows上配置集群的ip与主机名映射关系。登录集群后台,执行命令cat /etc

    来自:帮助中心

    查看更多 →

  • MapReduce

    MapReduce MapReduce基本原理 MapReduce与其他组件的关系 MapReduce开源增强特性 父主题: 组件介绍

    来自:帮助中心

    查看更多 →

  • 多个NameService环境下运行MapReduce任务失败

    多个NameService环境下运行MapReduce任务失败 问题 多个NameService环境下,运行使用viewFS功能的MapReduce或YARN任务失败。 回答 当使用viewFS时,只有在viewFS中挂载的目录才能被访问到。所以最可能的原因是配置的路径没有在viewFS的挂载点上。例如:

    来自:帮助中心

    查看更多 →

  • 降低MapReduce客户端运行任务失败率

    降低MapReduce客户端运行任务失败率 配置场景 当网络不稳定或者集群IO、CPU负载过高的情况下,通过调整如下参数值,降低客户端应用的失败率,保证应用的正常运行。 配置描述 在客户端的“mapred-site.xml”配置文件中调整如下参数。 “mapred-site.xm

    来自:帮助中心

    查看更多 →

  • 配置MapReduce任务日志归档和清理机制

    任务日志记录了每个运行在Container中的任务输出的日志信息。默认情况下,任务日志只会存放在各NodeManager的本地磁盘上。打开日志聚合功能后,NodeManager会在作业运行完成后将本地的任务日志进行合并,写入到HDFS中。 由于MapReduce的作业日志和任务日

    来自:帮助中心

    查看更多 →

  • 配置MapReduce任务日志归档和清理机制

    任务日志记录了每个运行在Container中的任务输出的日志信息。默认情况下,任务日志只会存放在各NodeManager的本地磁盘上。打开日志聚合功能后,NodeManager会在作业运行完成后将本地的任务日志进行合并,写入到HDFS中。 由于MapReduce的作业日志和任务日

    来自:帮助中心

    查看更多 →

  • 本地变量

    本地变量 本地变量可以理解为模块中的临时变量,其作用范围在所声明的模块内,通过关键字 "locals" 进行声明。本地变量适用于配置中有重复定义相同值或表达式的场景,可以减少代码冗余,并且易于修改。同时过度使用本地变量会导致变量的实际值被隐藏,代码晦涩,不利于维护,因此建议合理使用本地变量。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了