MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce classpath 更多内容
  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发简介

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例程序

    MapReduce统计样例程序 MapReduce统计样例程序开发思路 MapReduce统计样例代码 父主题: 开发MapReduce应用

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    educer抽象类实现。 main方法提供建立一个MapReduce job,并提交MapReduce作业到Hadoop集群。 代码样例 下面代码片段仅为演示,具体代码参见com.huawei.bigdata.mapreduce.examples.FemaleInfoCollector类:

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    MapReduce Java API接口介绍 关于MapReduce的详细API可以参考官方网站:http://hadoop.apache.org/docs/r3.1.1/api/index.html 常用接口 MapReduce中常见的类如下: org.apache.hadoop

    来自:帮助中心

    查看更多 →

  • Hive应用开发规则

    集群YARN的参数配置如下: mapreduce.reduce.java.opts=-Xmx2048M 客户端的参数配置如下: mapreduce.reduce.java.opts=-Xmx2048M 集群YARN修改后,参数配置如下: mapreduce.reduce.java.opts=-Xmx1024M

    来自:帮助中心

    查看更多 →

  • 常见jar包冲突处理方式

    针对jar包冲突的问题,可以确认是否不需使用三方工具的包,如果可以更改为集群相同版本的包,则修改引入的依赖版本。 建议用户尽量使用 MRS 集群自带的依赖包。 方案二: jar包版本修改演示 以MRS_2.1版本为例: 在pom.xml文件中添加“<properties>”参数,填写变量,方便后面统一修改版本。

    来自:帮助中心

    查看更多 →

  • 常见jar包冲突处理方式

    针对jar包冲突的问题,可以确认是否不需使用三方工具的包,如果可以更改为集群相同版本的包,则修改引入的依赖版本。 建议用户尽量使用MRS集群自带的依赖包。 方案二: jar包版本修改演示 以MRS_2.1版本为例: 在pom.xml文件中添加“<properties>”参数,填写变量,方便后面统一修改版本。

    来自:帮助中心

    查看更多 →

  • 提交Storm拓扑后Worker日志为空

    参考信息),保存并重启Storm服务。 MRS Manager界面操作入口:登录MRS Manager,依次选择 “服务管理 > Storm> 配置”。 FusionInsight Manager界面操作入口:登录FusionInsight Manager,选择“集群 > 服务 >

    来自:帮助中心

    查看更多 →

  • 部署应用失败,JDK已安装且已配置环境变量,但报错:please configure JDK environment variables,怎样处理?

    ava/jdk1.8.0_144/jre export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib:$CLASSPATH export PATH=$JAVA_HOME/bin:$PATH

    来自:帮助中心

    查看更多 →

  • MapReduce与其他组件的关系

    MapReduce与其他组件的关系 MapReduce和HDFS的关系 HDFS是Hadoop分布式文件系统,具有高容错和高吞吐量的特性,可以部署在价格低廉的硬件上,存储应用程序的数据,适合有超大数据集的应用程序。 MapReduce是一种编程模型,用于大数据集(大于1TB)的并

    来自:帮助中心

    查看更多 →

  • MapReduce任务长时间无进展

    xml”文件中的如下参数: “mapreduce.reduce.memory.mb” “mapreduce.reduce.java.opts” 例如:如果10个mapper的数据大小为5GB,那么理想的堆内存是1.5GB。随着数据大小的增加而增加堆内存大小。 父主题: MapReduce常见问题

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发常用概念

    MapReduce应用开发常用概念 Hadoop shell命令 Hadoop基本shell命令,包括提交MapReduce作业,kill MapReduce作业,进行HDFS文件系统各项操作等。 MapReduce输入输出(InputFormat,OutputFormat) M

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发环境简介

    MapReduce应用开发环境简介 在进行应用开发时,要准备的开发环境如表1所示。同时需要准备运行调测的Linux环境,用于验证应用程序运行正常。 表1 开发环境 准备项 说明 安装Eclipse 开发环境的基本配置。版本要求:4.2。 安装JDK 版本要求:1.8版本。 父主题:

    来自:帮助中心

    查看更多 →

  • (可选)创建MapReduce样例工程

    (可选)创建MapReduce样例工程 操作场景 除了导入MapReduce样例工程,您还可以使用IntelliJ IDEA新建一个MapReduce工程。 操作步骤 打开IntelliJ IDEA工具,选择“File > New > Project”,如图1所示。 图1 创建工程

    来自:帮助中心

    查看更多 →

  • 准备MapReduce样例初始数据

    准备MapReduce样例初始数据 操作场景 在调测程序之前,需要提前准备将待处理的数据。 运行MapReduce统计样例程序,请参考规划MapReduce统计样例程序数据。 运行MapReduce访问多组件样例程序,请参考规划MapReduce访问多组件样例程序数据。 规划MapReduce统计样例程序数据

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用开发环境

    准备MapReduce应用开发环境 准备MapReduce开发和运行环境 导入并配置MapReduce样例工程 (可选)创建MapReduce样例工程 配置MapReduce应用安全认证 父主题: MapReduce开发指南(安全模式)

    来自:帮助中心

    查看更多 →

  • (可选)创建MapReduce样例工程

    (可选)创建MapReduce样例工程 操作场景 除了导入MapReduce样例工程,您还可以使用IntelliJ IDEA新建一个MapReduce工程。 操作步骤 打开IntelliJ IDEA工具,选择“File > New > Project”,如图1所示。 图1 创建工程

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发常见问题

    MapReduce应用开发常见问题 MapReduce接口介绍 提交MapReduce任务时客户端长时间无响应 MapReduce二次开发远程调试 父主题: MapReduce开发指南(普通模式)

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用开发环境

    准备MapReduce应用开发环境 准备MapReduce开发和运行环境 导入并配置MapReduce样例工程 (可选)创建MapReduce样例工程 父主题: MapReduce开发指南(普通模式)

    来自:帮助中心

    查看更多 →

  • 通过Windows系统提交MapReduce任务

    通过Windows系统提交MapReduce任务 配置场景 用户将MapReduce任务从Windows上提交到Linux上运行,则“mapreduce.app-submission.cross-platform”参数值需配置为“true”。若集群无此参数,或参数值为“false

    来自:帮助中心

    查看更多 →

  • MapReduce任务commit阶段优化

    MapReduce任务commit阶段优化 操作场景 默认情况下,如果一个MR任务会产生大量的输出结果文件,那么该job在最后的commit阶段,会耗费较长的时间将每个task的临时输出结果commit到最终的结果输出目录。特别是在大集群中,大Job的commit过程会严重影响任务的性能表现。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了