MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce 数据截断 更多内容
  • MapReduce与其他组件的关系

    行运算。在MapReduce程序中计算的数据可以来自多个数据源,如Local FileSystem、HDFS、数据库等。最常用的是HDFS,利用HDFS的高吞吐性能读取大规模的数据进行计算,同时在计算完成后,也可以将数据存储到HDFS。 MapReduce和YARN的关系 Map

    来自:帮助中心

    查看更多 →

  • 通过Windows系统提交MapReduce任务

    通过Windows系统提交MapReduce任务 配置场景 用户将MapReduce任务从Windows上提交到Linux上运行,则“mapreduce.app-submission.cross-platform”参数值需配置为“true”。若集群无此参数,或参数值为“false

    来自:帮助中心

    查看更多 →

  • MapReduce任务commit阶段优化

    MapReduce任务commit阶段优化 操作场景 默认情况下,如果一个MR任务会产生大量的输出结果文件,那么该job在最后的commit阶段,会耗费较长的时间将每个task的临时输出结果commit到最终的结果输出目录。特别是在大集群中,大Job的commit过程会严重影响任务的性能表现。

    来自:帮助中心

    查看更多 →

  • MapReduce任务长时间无进展

    。根据输入数据的大小,优化“客户端安装路径/Yarn/config/mapred-site.xml”文件中的如下参数: “mapreduce.reduce.memory.mb” “mapreduce.reduce.java.opts” 例如:如果10个mapper的数据大小为5GB,那么理想的堆内存是1

    来自:帮助中心

    查看更多 →

  • 配置MapReduce shuffle address

    配置MapReduce shuffle address 配置场景 当MapReduce shuffle服务启动时,它尝试基于localhost绑定IP。如果需要MapReduce shuffle服务连接特定IP,可以参考该章节进行配置。 配置描述 当需要MapReduce shu

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发常用概念

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用开发用户

    准备MapReduce应用开发用户 开发用户用于运行样例工程。用户需要有组件权限,才能运行样例工程。 前提条件 MRS 服务集群开启了Kerberos认证,没有开启Kerberos认证的集群忽略该步骤。 操作步骤 登录MRS Manager,在MRS Manager界面选择“系统设置

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发简介

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    MapReduce Java API接口介绍 关于MapReduce的详细API可以参考官方网站。 http://hadoop.apache.org/docs/r3.1.1/api/index.html 常用接口 MapReduce中常见的类如下: org.apache.hadoop

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发简介

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例程序

    MapReduce统计样例程序 MapReduce统计样例程序开发思路 MapReduce统计样例代码 父主题: 开发MapReduce应用

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    educer抽象类实现。 main方法提供建立一个MapReduce job,并提交MapReduce作业到Hadoop集群。 代码样例 下面代码片段仅为演示,具体代码参见com.huawei.bigdata.mapreduce.examples.FemaleInfoCollector类:

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    MapReduce Java API接口介绍 关于MapReduce的详细API可以参考官方网站:http://hadoop.apache.org/docs/r3.1.1/api/index.html 常用接口 MapReduce中常见的类如下: org.apache.hadoop

    来自:帮助中心

    查看更多 →

  • MapReduce基本原理

    MapReduce基本原理 如需使用MapReduce,请确保MRS集群内已安装Hadoop服务。 MapReduce是Hadoop的核心,是Google提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算。概念“Map(映射)”和“Reduce(化简)”及其主要思想,均取自于函数式编程语言及矢量编程语言。

    来自:帮助中心

    查看更多 →

  • Loader基本原理

    Task从Map接收数据,然后按Region生成HFile,存放在HDFS临时目录中。 在MapReduce作业的提交阶段,将HFile从临时目录迁移到HBase目录中。 数据导入HDFS 在MapReduce作业的Map阶段中从外部数据源抽取数据,并将数据输出到HDFS临时目录下(以“输出目录-ldtmp”命名)。

    来自:帮助中心

    查看更多 →

  • MapReduce引擎无法查询Tez引擎执行union语句写入的数据

    MapReduce引擎无法查询Tez引擎执行union语句写入的数据 问题 Hive通过Tez引擎执行union相关语句写入的数据,切换到Mapreduce引擎后进行查询,发现数据没有查询出来。 回答 由于Hive使用Tez引擎在执行union语句时,生成的输出文件会存在HIVE_UNION_SUBDIR目录。

    来自:帮助中心

    查看更多 →

  • 使用Hue提交Oozie Mapreduce作业

    使用Hue提交Oozie Mapreduce作业 操作场景 该任务指导用户通过Hue界面提交Mapreduce类型的Oozie作业。 操作步骤 创建工作流,请参考使用Hue创建工作流。 在工作流编辑页面,选择“MapReduce 作业”按钮,将其拖到操作区中。 在弹出的“MapReduce job”窗口中配置“Jar

    来自:帮助中心

    查看更多 →

  • MapReduce任务commit阶段优化

    MapReduce任务commit阶段优化 操作场景 默认情况下,如果一个MR任务会产生大量的输出结果文件,那么该job在最后的commit阶段,会耗费较长的时间将每个task的临时输出结果commit到最终的结果输出目录。特别是在大集群中,大Job的commit过程会严重影响任务的性能表现。

    来自:帮助中心

    查看更多 →

  • MapReduce REST API接口介绍

    操作步骤 获取MapReduce上已完成任务的具体信息 命令: curl -k -i --negotiate -u : "https://10.120.85.2:26014/ws/v1/history/mapreduce/jobs" 其中10.120.85.2为MapReduce的“JH

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用开发环境

    准备MapReduce应用开发环境 MapReduce应用开发环境简介 准备MapReduce应用开发用户 准备Eclipse与JDK 准备MapReduce应用运行环境 导入并配置MapReduce样例工程 配置MapReduce应用安全认证 父主题: MapReduce开发指南

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用运行环境

    准备MapReduce应用运行环境 MapReduce的运行环境可以部署在Linux环境下。您可以按照如下操作完成运行环境准备。 操作步骤 确认服务端YARN组件和MapReduce组件已经安装,并正常运行。 客户端运行环境已安装1.7或1.8版本的JDK。 客户端机器的时间与H

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了