MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce combine 更多内容
  • MapReduce性能调优

    MapReduce性能调优 多CPU内核下的MapReduce调优配置 配置MapReduce Job基线 MapReduce Shuffle调优 MapReduce大任务的AM调优 配置MapReduce任务推测执行 通过Slow Start调优MapReduce任务 MapReduce任务commit阶段优化

    来自:帮助中心

    查看更多 →

  • 配置MapReduce shuffle address

    配置MapReduce shuffle address 配置场景 当MapReduce shuffle服务启动时,它尝试基于localhost绑定IP。如果需要MapReduce shuffle服务连接特定IP,可以参考该章节进行配置。 配置描述 当需要MapReduce shu

    来自:帮助中心

    查看更多 →

  • MapReduce性能调优

    MapReduce性能调优 多CPU内核下MapReduce调优配置 配置MapReduce Job基线 MapReduce Shuffle调优 MapReduce大任务的AM调优 配置MapReduce任务推测执行 通过Slow Start调优MapReduce任务 MapReduce任务commit阶段优化

    来自:帮助中心

    查看更多 →

  • 配置MRS Kafka目的端参数

    该参数指定不同的类型的控制写入数据格式或者指定配置参数。 使用该能力前必须配置参数configType,当前支持的值为COMBINE_DATA。 configType为COMBINE_DATA支持的搭配的参数如下: batchnum:将多条数据合并成一条,默认值为1。 featureTag:将每一条数据都打tag标签。

    来自:帮助中心

    查看更多 →

  • (可选)创建MapReduce样例工程

    (可选)创建MapReduce样例工程 操作场景 除了导入MapReduce样例工程,您还可以使用IntelliJ IDEA新建一个MapReduce工程。 操作步骤 打开IntelliJ IDEA工具,选择“File > New > Project”,如图1所示。 图1 创建工程

    来自:帮助中心

    查看更多 →

  • 准备MapReduce样例初始数据

    准备MapReduce样例初始数据 操作场景 在调测程序之前,需要提前准备将待处理的数据。 运行MapReduce统计样例程序,请参考规划MapReduce统计样例程序数据。 运行MapReduce访问多组件样例程序,请参考规划MapReduce访问多组件样例程序数据。 规划MapReduce统计样例程序数据

    来自:帮助中心

    查看更多 →

  • (可选)创建MapReduce样例工程

    (可选)创建MapReduce样例工程 操作场景 除了导入MapReduce样例工程,您还可以使用IntelliJ IDEA新建一个MapReduce工程。 操作步骤 打开IntelliJ IDEA工具,选择“File > New > Project”,如图1所示。 图1 创建工程

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发常见问题

    MapReduce应用开发常见问题 MapReduce接口介绍 提交MapReduce任务时客户端长时间无响应 MapReduce二次开发远程调试 父主题: MapReduce开发指南(普通模式)

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发常用概念

    MapReduce应用开发常用概念 Hadoop shell命令 Hadoop基本shell命令,包括提交MapReduce作业,kill MapReduce作业,进行HDFS文件系统各项操作等。 MapReduce输入输出(InputFormat,OutputFormat) M

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发环境简介

    MapReduce应用开发环境简介 在进行应用开发时,要准备的开发环境如表1所示。同时需要准备运行调测的Linux环境,用于验证应用程序运行正常。 表1 开发环境 准备项 说明 安装Eclipse 开发环境的基本配置。版本要求:4.2。 安装JDK 版本要求:1.8版本。 父主题:

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用开发环境

    准备MapReduce应用开发环境 准备MapReduce开发和运行环境 导入并配置MapReduce样例工程 (可选)创建MapReduce样例工程 配置MapReduce应用安全认证 父主题: MapReduce开发指南(安全模式)

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用开发环境

    准备MapReduce应用开发环境 准备MapReduce开发和运行环境 导入并配置MapReduce样例工程 (可选)创建MapReduce样例工程 父主题: MapReduce开发指南(普通模式)

    来自:帮助中心

    查看更多 →

  • MapReduce任务长时间无进展

    xml”文件中的如下参数: “mapreduce.reduce.memory.mb” “mapreduce.reduce.java.opts” 例如:如果10个mapper的数据大小为5GB,那么理想的堆内存是1.5GB。随着数据大小的增加而增加堆内存大小。 父主题: MapReduce常见问题

    来自:帮助中心

    查看更多 →

  • 通过Windows系统提交MapReduce任务

    通过Windows系统提交MapReduce任务 配置场景 用户将MapReduce任务从Windows上提交到Linux上运行,则“mapreduce.app-submission.cross-platform”参数值需配置为“true”。若集群无此参数,或参数值为“false

    来自:帮助中心

    查看更多 →

  • MapReduce任务commit阶段优化

    MapReduce任务commit阶段优化 操作场景 默认情况下,如果一个MR任务会产生大量的输出结果文件,那么该job在最后的commit阶段,会耗费较长的时间将每个task的临时输出结果commit到最终的结果输出目录。特别是在大集群中,大Job的commit过程会严重影响任务的性能表现。

    来自:帮助中心

    查看更多 →

  • MapReduce任务长时间无进展

    xml”文件中的如下参数: “mapreduce.reduce.memory.mb” “mapreduce.reduce.java.opts” 例如:如果10个mapper的数据大小为5GB,那么理想的堆内存是1.5GB。随着数据大小的增加而增加堆内存大小。 父主题: MapReduce常见问题

    来自:帮助中心

    查看更多 →

  • MapReduce与其他组件的关系

    MapReduce与其他组件的关系 MapReduce和HDFS的关系 HDFS是Hadoop分布式文件系统,具有高容错和高吞吐量的特性,可以部署在价格低廉的硬件上,存储应用程序的数据,适合有超大数据集的应用程序。 MapReduce是一种编程模型,用于大数据集(大于1TB)的并

    来自:帮助中心

    查看更多 →

  • 创建组合识别规则

    请参见如何调用API。 URI POST /v1/{project_id}/security/data-classification/rule/combine 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 项目ID,获取方法请参见项目ID和账号ID。

    来自:帮助中心

    查看更多 →

  • 编译并运行MapReduce应用

    编译并运行MapReduce应用 在程序代码完成开发后,可以在Linux环境中运行应用。 MapReduce应用程序只支持在Linux环境下运行,不支持在Windows环境下运行。 操作步骤 生成MapReduce应用可执行包。 执行mvn package生成jar包,在工程目录

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用开发环境

    准备MapReduce应用开发环境 准备MapReduce开发和运行环境 导入并配置MapReduce样例工程 (可选)创建MapReduce样例工程 父主题: MapReduce开发指南(普通模式)

    来自:帮助中心

    查看更多 →

  • MapReduce REST API接口介绍

    操作步骤 获取MapReduce上已完成任务的具体信息 命令: curl -k -i --negotiate -u : "http://10.120.85.2:19888/ws/v1/history/mapreduce/jobs" 其中10.120.85.2为MapReduce的“JH

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了