MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce map函数 更多内容
  • MapReduce统计样例程序

    MapReduce统计样例程序 MapReduce统计样例程序开发思路 MapReduce统计样例代码 父主题: 开发MapReduce应用

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    setMapperClass(Class<extends Mapper> cls) 核心接口,指定MapReduce作业的Mapper类,默认为空。也可以在“mapred-site.xml”中配置“mapreduce.job.map.class”项。 setReducerClass(Class<extends

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例程序

    MapReduce统计样例程序 MapReduce统计样例程序开发思路 MapReduce统计样例代码 父主题: 开发MapReduce应用

    来自:帮助中心

    查看更多 →

  • MapReduce样例工程介绍

    当前 MRS 提供以下MapReduce相关样例工程: 表1 MapReduce相关样例工程 样例工程位置 描述 mapreduce-example-normal MapReduce统计数据的应用开发示例: 提供了一个MapReduce统计数据的应用开发示例,通过类CollectionMapper

    来自:帮助中心

    查看更多 →

  • 配置MapReduce shuffle address

    配置MapReduce shuffle address 配置场景 当MapReduce shuffle服务启动时,它尝试基于localhost绑定IP。如果需要MapReduce shuffle服务连接特定IP,可以参考该章节进行配置。 配置描述 当需要MapReduce shu

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发常用概念

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用开发用户

    准备MapReduce应用开发用户 开发用户用于运行样例工程。用户需要有组件权限,才能运行样例工程。 前提条件 MRS服务集群开启了Kerberos认证,没有开启Kerberos认证的集群忽略该步骤。 操作步骤 登录MRS Manager,在MRS Manager界面选择“系统设置

    来自:帮助中心

    查看更多 →

  • MapReduce基本原理

    Reduce的根源是函数性编程中的Map和Reduce函数Map函数接受一组数据并将其转换为一个键/值对列表,输入域中的每个元素对应一个键/值对。Reduce函数接受Map函数生成的列表,然后根据它们的键缩小键/值对列表。MapReduce起到了将大事务分散到不同设备处理的能力

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发简介

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    setMapperClass(Class<extends Mapper> cls) 核心接口,指定MapReduce作业的Mapper类,默认为空。也可以在“mapred-site.xml”中配置“mapreduce.job.map.class”项。 setReducerClass(Class<extends

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发简介

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例程序

    MapReduce统计样例程序 MapReduce统计样例程序开发思路 MapReduce统计样例代码 父主题: 开发MapReduce应用

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    FemaleInfoCollector类: 样例1:类CollectionMapper定义Mapper抽象类的map()方法和setup()方法。 public static class CollectionMapper extends Mapper<Object, Text, Text

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    setMapperClass(Class<extends Mapper> cls) 核心接口,指定MapReduce作业的Mapper类,默认为空。也可以在“mapred-site.xml”中配置“mapreduce.job.map.class”项。 setReducerClass(Class<extends

    来自:帮助中心

    查看更多 →

  • Roaring Bitmap函数

    Bitmap函数 GaussDB (DWS)自8.1.3集群版本开始,支持高效的位图处理函数,可用于用户画像,精准营销等场景,极大的提高了查询性能。 rb_build(array) 描述:将int数组转成roaringbitmap类型。 返回值类型:roaringbitmap 示例:

    来自:帮助中心

    查看更多 →

  • MapReduce服务MRS接入LTS

    MapReduce服务 MRS接入LTS 支持MapReduce服务MRS日志接入LTS。 具体接入方法请参见MRS服务对接云日志服务。 父主题: 使用云服务接入LTS

    来自:帮助中心

    查看更多 →

  • MapReduce任务长时间无进展

    MapReduce任务长时间无进展 问题 MapReduce任务长时间无进展。 回答 一般是因为内存太少导致的。当内存较小时,任务中拷贝map输出的时间将显著增加。 为了减少等待时间,您可以适当增加堆内存空间。 任务的配置可根据mapper的数量和各mapper的数据大小来进行优

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发常用概念

    MapReduce应用开发常用概念 Hadoop shell命令 Hadoop基本shell命令,包括提交MapReduce作业,kill MapReduce作业,进行HDFS文件系统各项操作等。 MapReduce输入输出(InputFormat,OutputFormat) M

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发环境简介

    MapReduce应用开发环境简介 在进行应用开发时,要准备的开发环境如表1所示。同时需要准备运行调测的Linux环境,用于验证应用程序运行正常。 表1 开发环境 准备项 说明 安装Eclipse 开发环境的基本配置。版本要求:4.2。 安装JDK 版本要求:1.8版本。 父主题:

    来自:帮助中心

    查看更多 →

  • 通过Windows系统提交MapReduce任务

    通过Windows系统提交MapReduce任务 配置场景 用户将MapReduce任务从Windows上提交到Linux上运行,则“mapreduce.app-submission.cross-platform”参数值需配置为“true”。若集群无此参数,或参数值为“false

    来自:帮助中心

    查看更多 →

  • MapReduce任务commit阶段优化

    MapReduce任务commit阶段优化 操作场景 默认情况下,如果一个MR任务会产生大量的输出结果文件,那么该job在最后的commit阶段,会耗费较长的时间将每个task的临时输出结果commit到最终的结果输出目录。特别是在大集群中,大Job的commit过程会严重影响任务的性能表现。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了