MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce原理详解 更多内容
  • APP认证工作原理

    APP认证工作原理 构造规范请求。 将待发送的请求内容按照与API网关(即API管理)后台约定的规则组装,确保客户端签名、API网关后台认证时使用的请求内容一致。 使用规范请求和其他信息创建待签字符串。 使用AK/SK和待签字符串计算签名。 将生成的签名信息作为请求消息头添加到H

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • 背景及原理(服务编排)

    背景及原理(服务编排) AstroZero的服务编排,支持对逻辑判断组件、数据处理组件,以及脚本、子服务编排、商业对象等进行可视化组合编排,实现丰富的业务功能。 了解服务编排 在传统的开发中程序员一般是基于代码进行开发,程序员需要学习内容较多,开发效率相对低一些,开发门槛也高。A

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM 将根据源端的字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时的字段类型映射 CDM在 数据仓库 服务(Data Warehouse Service,简称DWS)中自动建表时,DWS的表与源表的字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • FederatedHPA工作原理

    展出的Pod调度到具有更多资源的集群,以解决单个集群的资源限制,提高故障发生时的恢复能力。 FederatedHPA工作原理 FederatedHPA的工作原理如图1,实现流程如下: HPA Controller通过API定期查询工作负载的指标数据。 karmada-apiser

    来自:帮助中心

    查看更多 →

  • Spark基本原理

    与Hadoop集成:Spark能够直接运行于Hadoop的集群,并且能够直接读取现存的Hadoop数据。 MRS 服务的Spark组件具有以下优势: MRS服务的Spark Streaming组件支持数据实时处理能力而非定时触发。 MRS服务的Spark组件支持Structured Streaming,支持DataSet

    来自:帮助中心

    查看更多 →

  • Hue基本原理

    Hue基本原理 Hue是一组WEB应用,用于和MRS大数据组件进行交互,能够帮助用户浏览HDFS,进行Hive查询,启动MapReduce任务等,它承载了与所有MRS大数据组件交互的应用。 Hue主要包括了文件浏览器和查询编辑器的功能: 文件浏览器能够允许用户直接通过界面浏览以及操作HDFS的不同目录;

    来自:帮助中心

    查看更多 →

  • Storm基本原理

    易于调试:CQL提供了详细的异常码说明,降低了用户对各种错误的处理难度。 关于Storm的架构和详细原理介绍,请参见:https://storm.apache.org/。 Storm原理 基本概念 表1 概念介绍 概念 说明 Tuple Storm核心数据结构,是消息传递的基本单元,

    来自:帮助中心

    查看更多 →

  • Flink基本原理

    Flink基本原理 Flink简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景

    来自:帮助中心

    查看更多 →

  • YARN基本原理

    YARN基本原理 为了实现一个Hadoop集群的集群共享、可伸缩性和可靠性,并消除早期MapReduce框架中的JobTracker性能瓶颈,开源社区引入了统一的资源管理框架YARN。 YARN是将JobTracker的两个主要功能(资源管理和作业调度/监控)分离,主要方法是创建

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩的控制器,HPA周期性检查Pod的度量数据,计算满足HPA资源所配置的目标数值所需的副本数量,进而调整目标资源(如Deployment)的replicas字段。

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 CCE支持多种工作负载伸缩方式,策略对比如下: 表1 弹性伸缩策略对比 伸缩策略 HPA策略 CronHPA策略 CustomedHPA策略 VPA策略 AHPA策略 策略介绍 Kubernetes中实现POD水平自动伸缩的功能,即Horizontal Pod Autoscaling。

    来自:帮助中心

    查看更多 →

  • HBase基本原理

    HBase基本原理 数据存储使用HBase来承接,HBase是一个开源的、面向列(Column-Oriented)、适合存储海量非结构化数据或半结构化数据的、具备高可靠性、高性能、可灵活扩展伸缩的、支持实时数据读写的分布式存储系统。更多关于HBase的信息,请参见:https://hbase

    来自:帮助中心

    查看更多 →

  • Kafka基本原理

    Group1与Consumer Group2中。 关于Kafka架构和详细原理介绍,请参见:https://kafka.apache.org/24/documentation.html。 Kafka原理 消息可靠性 Kafka Broker收到消息后,会持久化到磁盘,同时,To

    来自:帮助中心

    查看更多 →

  • HetuEngine基本原理

    HetuEngine基本原理 HetuEngine简介 HetuEngine是自研高性能交互式SQL分析及数据虚拟化引擎。与大数据生态无缝融合,实现海量数据秒级交互式查询;支持跨源跨域统一访问,使能 数据湖 内、湖间、湖仓一站式SQL融合分析。 HetuEngine结构 HetuEn

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM将根据源端的字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时的字段类型映射 CDM在数据仓库服务(Data Warehouse Service,简称DWS)中自动建表时,DWS的表与源表的字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • MapReduce二次开发远程调试

    MapReduce二次开发远程调试 问题 MapReduce二次开发过程中如何远程调试业务代码? 回答 MapReduce开发调试采用的原理是Java的远程调试机制,在Map/Reduce任务启动时,添加Java远程调试命令。 首先理解两个参数:“mapreduce.map.java

    来自:帮助中心

    查看更多 →

  • 使用Mapreduce

    使用Mapreduce 配置使用分布式缓存执行MapReduce任务 配置MapReduce shuffle address 配置MapReduce集群管理员列表 通过Windows系统提交MapReduce任务 配置MapReduce任务日志归档和清理机制 MapReduce性能调优

    来自:帮助中心

    查看更多 →

  • MapReduce Action

    MapReduce Action 功能描述 MapReduce任务节点,负责执行一个map-reduce任务。 参数解释 MapReduce Action节点中包含的各参数及其含义,请参见表1。 表1 参数含义 参数 含义 name map-reduce action的名称 resourceManager

    来自:帮助中心

    查看更多 →

  • MapReduce二次开发远程调试

    MapReduce二次开发远程调试 问题 MapReduce二次开发过程中如何远程调试业务代码? 回答 MapReduce开发调试采用的原理是Java的远程调试机制,在Map/Reduce任务启动时,添加Java远程调试命令。 首先理解两个参数:“mapreduce.map.java

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了