MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce etl 更多内容
  • ETL Job

    ETL Job 功能 通过ETL Job节点可以从指定数据源中抽取数据,经过数据准备对数据预处理后,导入到目标数据源。 目标端是DWS的ETL Job节点,不支持使用委托进行调度,建议采用兼容性更佳的公共IAM账号方式进行调度,详见配置调度身份。 参数 用户可参考表1,表2和表3配置ETL

    来自:帮助中心

    查看更多 →

  • ETL映射设计

    ETL映射设计 ETL映射设计用于将数据从源系统抽取出来,经过清洗、转换、加载等一系列操作后,将数据加载到目标系统的过程。解决方案工作台支持SDI、DWI和DWR层物理表、支持多种数据库、支持生成脚本等。 新建ETL映射 图1 新建ETL映射 参数 说明 映射名称 自定义 数据库数据类型

    来自:帮助中心

    查看更多 →

  • ETL Mapping

    添加实施作业 配置ETL Mapping。 实施作业名称:自定义; 关联需求:可选,可与新建项目时的相关需求关联起来,关联后该ETL作业将会自动在实施进度管理中展示; ETL Mapping名称:选择配置好的ETL映射; DataArts Studio 目录:选填需要将该ETL映射同步至DataArts

    来自:帮助中心

    查看更多 →

  • 节点参考

    ClickHouse MRS HetuEngine MRS Impala SQL MRS Flink Job MRS MapReduce CSS Shell RDS SQL ETL Job Python DORIS SQL GBase SQL ModelArts Train Http Trigger

    来自:帮助中心

    查看更多 →

  • MapReduce

    MapReduce MapReduce基本原理 MapReduce与其他组件的关系 MapReduce开源增强特性 父主题: 组件介绍

    来自:帮助中心

    查看更多 →

  • Hive应用开发简介

    操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数

    来自:帮助中心

    查看更多 →

  • Hive应用开发简介

    数据,其基本原理是将HiveQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HiveQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HiveQL完成海量结构化数据分析。

    来自:帮助中心

    查看更多 →

  • HDFS文件系统目录简介

    目录 否 HBase作业失败或者脏数据丢失 /user/loader/etl_dirty_data_dir /user/loader/etl_hbase_putlist_tmp /user/loader/etl_hbase_tmp /user/mapred 固定目录 存放Hadoop相关的文件

    来自:帮助中心

    查看更多 →

  • MapReduce Action

    MapReduce Action 功能描述 MapReduce任务节点,负责执行一个map-reduce任务。 参数解释 MapReduce Action节点中包含的各参数及其含义,请参见表1。 表1 参数含义 参数 含义 name map-reduce action的名称 resourceManager

    来自:帮助中心

    查看更多 →

  • 使用MapReduce

    使用MapReduce 配置使用分布式缓存执行MapReduce任务 配置MapReduce shuffle address 配置MapReduce集群管理员列表 通过Windows系统提交MapReduce任务 配置MapReduce任务日志归档和清理机制 MapReduce性能调优

    来自:帮助中心

    查看更多 →

  • 使用Mapreduce

    使用Mapreduce 配置使用分布式缓存执行MapReduce任务 配置MapReduce shuffle address 配置MapReduce集群管理员列表 通过Windows系统提交MapReduce任务 配置MapReduce任务日志归档和清理机制 MapReduce性能调优

    来自:帮助中心

    查看更多 →

  • MapReduce Action

    MapReduce Action 功能描述 MapReduce任务节点,负责执行一个map-reduce任务。 参数解释 MapReduce Action节点中包含的各参数及其含义,请参见表1。 表1 参数含义 参数 含义 name map-reduce action的名称 resourceManager

    来自:帮助中心

    查看更多 →

  • Hive应用开发简介

    操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数

    来自:帮助中心

    查看更多 →

  • HDFS文件系统目录简介

    目录 否 HBase作业失败或者脏数据丢失 /user/loader/etl_dirty_data_dir /user/loader/etl_hbase_putlist_tmp /user/loader/etl_hbase_tmp /user/oozie 固定目录 存放oozie运行时需要的依赖库,需用户手动上传

    来自:帮助中心

    查看更多 →

  • Hive应用开发简介

    操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数

    来自:帮助中心

    查看更多 →

  • Hive基本原理

    HDFS/HBase集群 Hive表数据存储在HDFS集群中。 MapReduce/Yarn集群 提供分布式计算服务:Hive的大部分数据操作依赖MapReduce,HiveServer的主要功能是将HQL语句转换成MapReduce任务,从而完成对海量数据的处理。 HCatalog建立在Hive

    来自:帮助中心

    查看更多 →

  • MRS MapReduce

    MRS MapReduce 功能 通过MRS MapReduce节点实现在MRS中执行预先定义的MapReduce程序。 参数 用户可参考表1和表2配置MRS MapReduce节点的参数。 表1 属性参数 参数 是否必选 说明 节点名称 是 节点名称,可以包含中文、英文字母、数

    来自:帮助中心

    查看更多 →

  • 开发MapReduce应用

    开发MapReduce应用 MapReduce统计样例程序 MapReduce访问多组件样例程序 父主题: MapReduce开发指南(安全模式)

    来自:帮助中心

    查看更多 →

  • MapReduce接口介绍

    MapReduce接口介绍 MapReduce Java API接口介绍 MapReduce REST API接口介绍 父主题: MapReduce应用开发常见问题

    来自:帮助中心

    查看更多 →

  • 开发MapReduce应用

    开发MapReduce应用 MapReduce统计样例程序 MapReduce访问多组件样例程序 父主题: MapReduce开发指南(安全模式)

    来自:帮助中心

    查看更多 →

  • MapReduce接口介绍

    MapReduce接口介绍 MapReduce Java API接口介绍 MapReduce REST API接口介绍 父主题: MapReduce应用开发常见问题

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了