时间序列预测模型 更多内容
  • 创建和管理序列

    SEQUENCE 除了为序列指定了cache,方法二所实现的功能基本与方法一类似。但是一旦定义cache,序列将会产生空洞(序列值为不连贯的数值,如:1.4.5),并且不能保序。另外为某序列指定从属列后,该列删除,对应的sequence也会被删除。 虽然数据库并不限制序列只能为一列产生默认值,但建议不要多列共用同一个序列。

    来自:帮助中心

    查看更多 →

  • 创建和管理序列

    SEQUENCE 除了为序列指定了cache,方法二所实现的功能基本与方法一类似。但是一旦定义cache,序列将会产生空洞(序列值为不连贯的数值,如:1.4.5),并且不能保序。另外为某序列指定从属列后,该列删除,对应的sequence也会被删除。 虽然数据库并不限制序列只能为一列产生默认值,但建议不要多列共用同一个序列。

    来自:帮助中心

    查看更多 →

  • 方案概述

    函数工作流 :用于实现调用销量预测服务的业务逻辑,完成模型的自动部署。 销量预测服务:提供分时销量预测服务,可灵活调整预测时间点,根据历史销量、商品属性、促销活动等基础信息训练得到准确的预测模型。 方案优势 行业化建模经验 内置社区团购类销量预测行业化建模经验,有效提高模型预测准确率。 降本增效

    来自:帮助中心

    查看更多 →

  • 序列管理

    序列管理 创建序列 在“对象浏览器”窗格,右键单击“序列”,然后选择“创建序列”。Data Studio弹出“创建序列”对话框。 设置相关参数以创建序列。 在“序列名称”字段输入序列名称。 勾选“区分大小写”,“序列名称”字段文本将区分大小写。例如,输入的序列名称为“Employ

    来自:帮助中心

    查看更多 →

  • Kudu应用开发简介

    支持结构化数据模型。 通过结合所有以上属性,Kudu的目标是支持在当前Hadoop存储技术上难以实现或无法实现的应用。 Kudu的应用场景有: 需要最终用户立即使用新到达数据的报告型应用。 同时支持大量历史数据查询和细粒度查询的时序应用。 使用预测模型并基于所有历史数据定期刷新预测模型来做出实时决策的应用。

    来自:帮助中心

    查看更多 →

  • Kudu

    支持结构化数据模型 通过结合所有以上属性,Kudu的目标是支持在当前Hadoop存储技术上难以实现或无法实现的应用。 Kudu的应用场景有: 需要最终用户立即使用新到达数据的报告型应用 同时支持大量历史数据查询和细粒度查询的时序应用 使用预测模型并基于所有历史数据定期刷新预测模型来做出实时决策的应用

    来自:帮助中心

    查看更多 →

  • 在推理生产环境中部署推理服务

    。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。 模型权重文件获取地址请参见支持的模型列表和权重文件。 如果需要部署量化模型,请参考推理模型量化在Notebook

    来自:帮助中心

    查看更多 →

  • 使用TICS联邦预测进行新数据离线预测

    使用 TICS 联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景

    来自:帮助中心

    查看更多 →

  • ADMET属性预测接口

    ADMET属性预测接口 功能介绍 计算小分子的物化性质,包括吸收(adsorption)、分布(distribution)、代谢(metabolism)、清除(excretion)与毒性(toxicity)。 URI POST /v1/{project_id}/admet 表1 路径参数

    来自:帮助中心

    查看更多 →

  • 重保风险预测

    重保风险预测 使用场景 仅白名单用户可以使用重保风险预测。 操作步骤 登录管理控制台。 选择“服务列表 > 管理与监管 > 优化顾问”优化顾问服务页面。 左侧导航树选择“容量优化 > 重保风险预测”。 单击“风险分析”进行风险预测配置。 批量参数设置,选择活动时间段。 配置容量阈

    来自:帮助中心

    查看更多 →

  • 部署预测分析服务

    “实例详情”进入“在线服务”界面,在“预测”页签的“预测代码”区域,输入调试代码。 单击“预测”进行测试,预测完成后,右侧“返回结果”区域输出测试结果。如模型准确率不满足预期,可在“数据标注”页签,重新进行模型训练及模型部署。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。

    来自:帮助中心

    查看更多 →

  • 联邦预测作业

    联邦预测作业 概述 批量预测 实时预测 查看作业计算过程和作业报告

    来自:帮助中心

    查看更多 →

  • Kudu应用开发简介

    支持结构化数据模型。 通过结合所有以上属性,Kudu的目标是支持在当前Hadoop存储技术上难以实现或无法实现的应用。 Kudu的应用场景有: 需要最终用户立即使用新到达数据的报告型应用。 同时支持大量历史数据查询和细粒度查询的时序应用。 使用预测模型并基于所有历史数据定期刷新预测模型来做出实时决策的应用。

    来自:帮助中心

    查看更多 →

  • 请求超时返回Timeout

    {预测地址}。如返回Timeout则需排查本地防火墙,代理和网络配置。 检查模型是否启动成功或者模型处理单个消息的时长。因APIG(API网关)的限制,模型单次预测时间不能超过40S,超过后系统会默认返回Timeout错误。 父主题: 服务预测

    来自:帮助中心

    查看更多 →

  • 在线服务

    完成在线服务基本信息和模型仓库及配置。 图1 在线服务配置 名称:输入在线服务名称,只能包含数字、英文、中文、下划线、中划线,输入长度不能超过64个字符。 运行时间:设置在线服务运行时间,运行时间到期后,在线服务将自动停止。在线服务的最晚停止时间模型套餐包的最晚失效时间模型套餐包的最晚

    来自:帮助中心

    查看更多 →

  • 在线服务预测报错ModelArts.4503

    因APIG(API网关)限制,平台每次请求预测时间不超过40秒。数据从平台发送到服务,服务预测推理,再将结果返回的时间不超过限制,可以成功返回预测结果。当服务预测时间过长或者频繁预测导致服务接收不过来请求,即会出现该报错。 可以通过以下方式解决问题: 服务预测请求内容过大时,会因数据处理慢

    来自:帮助中心

    查看更多 →

  • 开始使用

    ed_hour对应时间模型模型训练 若需修改模型参数重新训练模型,可在对应的数据目录(data_url)下,上传config.py文件,修改其中对应参数。 模型注册 model_name:模型参数名称。 部署服务 model_name:模型参数名称,和模型注册部分的需保持一致

    来自:帮助中心

    查看更多 →

  • 部署图像分类服务

    进入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出标签名称“sunflowers”和检测的评分。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的

    来自:帮助中心

    查看更多 →

  • 新建CPI任务接口

    新建CPI任务接口 功能介绍 输入蛋白序列、小分子库,创建分子-蛋白互作预测任务。 URI POST /v1/{project_id}/task/cpi 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 华为云项目id 请求参数 表2 请求Header参数

    来自:帮助中心

    查看更多 →

  • 部署文本分类服务

    ,进入“模型部署”界面,选择状态为“运行中”的服务版本,在“服务测试”区域的文本框中,输入需测试的文本。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出测试结果。如模型准确率不满足预期,可在“数据标注”页签中添加数据并进行标注,重新进行模型训练及模型部署。预测结果中的

    来自:帮助中心

    查看更多 →

  • 序列号生成函数

    序列号生成函数 generate_series()函数根据指定的开始值(start)、结束值(stop)和步长(step)返回一个基于系列的集合。 generate_series()函数的入参中,当step是正数且start大于stop,则返回零行。相反,当step是负数且sta

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了