GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    GPU云计算一个月多少钱 更多内容
  • (推荐)自动安装GPU加速型ECS的GPU驱动(Windows)

    (推荐)自动安装GPU加速型E CS GPU驱动(Windows) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Windows实例上通过脚本自动安装GPU驱动。 使用须知 如果GPU加速型实例已安装G

    来自:帮助中心

    查看更多 →

  • 计算增值服务

    计算增值服务 鲲鹏计算移植专家服务 鲲鹏全栈调优支持服务 鲲鹏工程师培训及认证服务 鲲鹏工程师进阶培训及认证服务 鲲鹏人才培养专家进阶服务 鲲鹏物理资源服务 父主题: 上与实施

    来自:帮助中心

    查看更多 →

  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • GPU实例故障处理流程

    GPU实例故障处理流程 GPU实例故障处理流程如图1所示,对应的操作方法如下: CES监控事件通知:配置GPU的CES监控后会产生故障事件通知。 故障信息收集:可使用GPU故障信息收集脚本一键收集,也可参考故障信息收集执行命令行收集。 GPU实例故障分类列表:根据错误信息在故障分类列表中识别故障类型。

    来自:帮助中心

    查看更多 →

  • GPU节点驱动版本

    GPU节点驱动版本 选择GPU节点驱动版本 CCE推荐的GPU驱动版本列表 手动更新GPU节点驱动版本 通过节点池升级节点的GPU驱动版本 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • 使用GPU虚拟化

    设备。 init容器不支持使用GPU虚拟化资源。 GPU虚拟化支持显存隔离、显存与算力隔离两种隔离模式。单个GPU卡仅支持调度同一种隔离模式的工作负载。 使用GPU虚拟化后,不支持使用Autoscaler插件自动扩缩容GPU虚拟化节点。 XGPU服务的隔离功能不支持以UVM的方式申请显存,即调用CUDA

    来自:帮助中心

    查看更多 →

  • 计算公式

    计算公式 简介 字面量 操作符 函数 其他 父主题: 分析任务定义

    来自:帮助中心

    查看更多 →

  • 相邻消息计算

    相邻消息计算 算子简介 名称:相邻消息计算 功能说明:基于前一消息和当前消息,按照表达式进行数值计算计算的结果赋值给当前输入消息的属性。 举例:消息中有上报机器的产品总产量,但没有相对上一个上报周期的增量产量。通过相邻消息计算算子,可以用本消息中的产品总量减去上一个消息中的产品

    来自:帮助中心

    查看更多 →

  • 点位计算

    1 1000 1 20000 20 点位清洗 点位清洗,在边侧提供对设备上报的点位进行数据去重、数据波动抑制的功能,适用于降低冗余数据、上带宽的OT数采场景。 点位清洗规则是针对模块的每个点位,为可选项,使用前需要配置“静默时间窗”和“偏差”这两个参数。具体操作步骤请参见点位清洗。

    来自:帮助中心

    查看更多 →

  • 数学计算函数

    数学计算函数 本文介绍数学计算函数的语法规则,包括参数解释、函数示例等。 函数列表 表1 数学计算函数 函数 描述 round函数 用于对x进行四舍五入。如果n存在,则保留n位小数;如果n不存在,则对x进行四舍五入取整数。 round函数 用于对x进行四舍五入。如果n存在,则保留

    来自:帮助中心

    查看更多 →

  • 方案概述

    存。 图1 基于OBS+SFS Turbo的华为AI存储解决方案 方案优势 华为AI存储解决方案的主要优势如下表所示。 表1 华为AI存储解决方案的主要优势 序号 主要优势 详细描述 1 存算分离,资源利用率高 GPU/NPU算力和SFS Turbo存储解耦,各自按需扩容,资源利用率提升。

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为 服务器 GPU编号,可以为0,1,2,3等,表明对程序可见的GP

    来自:帮助中心

    查看更多 →

  • 选择GPU节点驱动版本

    选择GPU节点驱动版本 使用GPU加速型 云服务器 时,需要安装正确的Nvidia基础设施软件,才可以使用GPU实现计算加速功能。在使用GPU前,您需要根据GPU型号,选择兼容配套软件包并安装。 本文将介绍如何选择GPU节点的驱动版本及配套的CUDA Toolkit。 如何选择GPU节点驱动版本

    来自:帮助中心

    查看更多 →

  • 准备GPU虚拟化资源

    准备GPU虚拟化资源 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。本文介绍如何在GPU节点上实现GPU的调度和隔离能力。 前提条件 配置 支持版本 集群版本 v1.23.8-r0、v1.25

    来自:帮助中心

    查看更多 →

  • 包年/包月

    资源降配:新配置价格低于老配置价格,此时华为会将新老配置的差价退给您。 资源降配会影响ModelArts性能,通常不建议您这样操作。这里以资源升配且无任何优惠的场景为例,假设您在2023/04/08购买了一个包年/包月专属资源池(规格:CPU: 8 核 32GB,计算节点个数:1),购买时长为1

    来自:帮助中心

    查看更多 →

  • 查询ModelArts计算节点规格

    String 资源规格的核数。 cpu String 资源规格CPU内存。 gpu_num Int 资源规格GPU的个数。 gpu_type String 资源规格GPU的类型。 spec_code String 资源的规格类型。 max_num Int 以选择的最大节点数量。 storage

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    存。 图1 基于OBS+SFS Turbo的华为AI存储解决方案 方案优势 华为AI存储解决方案的主要优势如下表所示。 表1 华为AI存储解决方案的主要优势 序号 主要优势 详细描述 1 存算分离,资源利用率高 GPU/NPU算力和SFS Turbo存储解耦,各自按需扩容,资源利用率提升。

    来自:帮助中心

    查看更多 →

  • 如何避免非GPU/NPU负载调度到GPU/NPU节点?

    如何避免非GPU/NPU负载调度到GPU/NPU节点? 问题现象 当集群中存在GPU/NPU节点和普通节点混合使用的场景时,普通工作负载也可以调度到GPU/NPU节点上,可能出现GPU/NPU资源未充分利用的情况。 问题原因 由于GPU/NPU节点同样提供CPU、内存资源,在一般

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    存。 图1 基于OBS+SFS Turbo的华为AI存储解决方案 方案优势 华为AI存储解决方案的主要优势如下表所示。 表1 华为AI存储解决方案的主要优势 序号 主要优势 详细描述 1 存算分离,资源利用率高 GPU/NPU算力和SFS Turbo存储解耦,各自按需扩容,资源利用率提升。

    来自:帮助中心

    查看更多 →

  • 应用GPU资源调度方式

    应用GPU资源调度方式 IEF支持多应用共享的方式使用GPU显卡。 IEF支持单个应用使用多个GPU显卡。 GPU资源调度基于GPU显存容量,调度采用GPU显存预分配方式而非实时GPU显存资源。 当应用需要使用的GPU显存资源小于单个GPU卡显存时,支持以共享方式进行资源调度,对

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了